Singular Vectors for Tropical Cyclone–Like Vortices in a Nondivergent Barotropic Framework

Munehiko Yamaguchi Typhoon Research Department, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

Search for other papers by Munehiko Yamaguchi in
Current site
Google Scholar
PubMed
Close
,
David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
,
Mohamed Iskandarani Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Mohamed Iskandarani in
Current site
Google Scholar
PubMed
Close
,
Sharanya J. Majumdar Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Sharanya J. Majumdar in
Current site
Google Scholar
PubMed
Close
,
Melinda S. Peng Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Melinda S. Peng in
Current site
Google Scholar
PubMed
Close
, and
Carolyn A. Reynolds Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, singular vectors (SVs) are calculated for tropical cyclone (TC)–like vortices on an f plane and β plane using a barotropic model, and the structure and time evolution of the SVs are investigated. In the f-plane study, SVs are calculated for TC-like vortices that do and do not satisfy a necessary condition of barotropic instability of normal modes, in which the vorticity gradient changes sign. It is found that, in the case where the initial vortices do not meet the condition, 1) the SVs are tilted against the shear of the background angular velocity as found earlier by Nolan and Farrell, indicating the growth of SVs through the Orr mechanism; 2) the leading singular value increases with the maximum tangential wind speed Vmax and decreases with the radius of the maximum wind (RMW); and 3) the locations of SVs move outward with increasing RMW, Vmax, and the optimization time. In the case where the initial vortex allows for barotropic instability, the SV is initially tilted against the background shear and exhibits transient growth for a limited period. At a certain time during the initial growth, the SV “locks in” to a normal mode structure and remains in that structure so that it may grow exponentially with time.

In contrast to the SVs on an f plane, the azimuthal distribution of the SVs on a β plane becomes more asymmetric, and the extent of the asymmetry increases as the strength of the beta gyres increases. On the β plane, all first and second SVs calculated in this study have an azimuthal wavenumber-1 structure at the optimization time, regardless of whether the vorticity gradient of initial TC-like vortices changes sign and the TC-like vortices include the beta gyres at initial time. It is found that when the first and second SVs are used as ensemble initial perturbations, the linear combination of the initial first and second SVs can shift the vortex toward any direction at the optimization time. This is true even when SVs with a low horizontal resolution are used as initial perturbations, as in the European Centre for Medium-Range Weather Forecasts (ECMWF) and Japan Meteorological Agency (JMA) ensemble prediction system. Such wavenumber-1 perturbations could be useful for generating sufficient spread among the tropical cyclone tracks in ensemble forecasts.

Corresponding author address: Munehiko Yamaguchi, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: myamagu@mri-jma.go.jp

Abstract

In this study, singular vectors (SVs) are calculated for tropical cyclone (TC)–like vortices on an f plane and β plane using a barotropic model, and the structure and time evolution of the SVs are investigated. In the f-plane study, SVs are calculated for TC-like vortices that do and do not satisfy a necessary condition of barotropic instability of normal modes, in which the vorticity gradient changes sign. It is found that, in the case where the initial vortices do not meet the condition, 1) the SVs are tilted against the shear of the background angular velocity as found earlier by Nolan and Farrell, indicating the growth of SVs through the Orr mechanism; 2) the leading singular value increases with the maximum tangential wind speed Vmax and decreases with the radius of the maximum wind (RMW); and 3) the locations of SVs move outward with increasing RMW, Vmax, and the optimization time. In the case where the initial vortex allows for barotropic instability, the SV is initially tilted against the background shear and exhibits transient growth for a limited period. At a certain time during the initial growth, the SV “locks in” to a normal mode structure and remains in that structure so that it may grow exponentially with time.

In contrast to the SVs on an f plane, the azimuthal distribution of the SVs on a β plane becomes more asymmetric, and the extent of the asymmetry increases as the strength of the beta gyres increases. On the β plane, all first and second SVs calculated in this study have an azimuthal wavenumber-1 structure at the optimization time, regardless of whether the vorticity gradient of initial TC-like vortices changes sign and the TC-like vortices include the beta gyres at initial time. It is found that when the first and second SVs are used as ensemble initial perturbations, the linear combination of the initial first and second SVs can shift the vortex toward any direction at the optimization time. This is true even when SVs with a low horizontal resolution are used as initial perturbations, as in the European Centre for Medium-Range Weather Forecasts (ECMWF) and Japan Meteorological Agency (JMA) ensemble prediction system. Such wavenumber-1 perturbations could be useful for generating sufficient spread among the tropical cyclone tracks in ensemble forecasts.

Corresponding author address: Munehiko Yamaguchi, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: myamagu@mri-jma.go.jp
Save
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone forecast guidance. Mon. Wea. Rev., 131, 16131628.

    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., S. J. Majumdar, C. A. Reynolds, and B. J. Etherton, 2011: An observing system experiment for tropical cyclone targeting techniques using the Global Forecast System. Mon. Wea. Rev., 139, 895907.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J.-F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127, 685708.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble (TIGGE). Bull. Amer. Meteor. Soc., 91, 10591072.

  • Buizza, R., 1994: Sensitivity of optimal unstable structures. Quart. J. Roy. Meteor. Soc., 120, 429451.

  • Buizza, R., and T. N. Palmer, 1995: The singular vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and A. Montani, 1999: Targeting observations using singular vectors. J. Atmos. Sci., 56, 29652985.

  • Buizza, R., R. Gelaro, F. Molteni, and T. N. Palmer, 1997: The impact of increased resolution on predictability studies with singular vectors. Quart. J. Roy. Meteor. Soc., 123, 10071033.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265.

    • Search Google Scholar
    • Export Citation
  • Coddington, E. A., and N. Levinson, 1955: Theory of Ordinary Differential Equations. McGraw-Hill, 429 pp.

  • Davidson, E. R., 1975: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys., 17, 8794.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 16271648.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53, 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53, 20412053.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1988: On the instability of geostrophic vortices. J. Fluid Mech., 197, 349388.

  • Gall, R. L., 1983: A linear analysis of the multiple vortex phenomenon in simulated tornadoes. J. Atmos. Sci., 40, 20102024.

  • Golub, G. H., and C. F. van Loan, 1996: Matrix Computations. 3rd ed. Johns Hopkins University Press, 694 pp.

  • Harnisch, F., and M. Weissmann, 2010: Sensitivity of typhoon forecasts to different subsets of targeted dropsonde observations. Mon. Wea. Rev., 138, 26642680.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and M. M. Coutinho, 2005: Moist singular vectors and the predictability of some high impact European cyclones. Quart. J. Roy. Meteor. Soc., 131, 581601.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., R. Buizza, and J. Badger, 2000: The nature of singular vector growth and structure. Quart. J. Roy. Meteor. Soc., 126, 15651580.

    • Search Google Scholar
    • Export Citation
  • Iskandarani, M., 2008: Simulating hydrostatic and non-hydrostatic oceanic flows. Int. J. Numer. Methods Fluids, 58, 11351146.

  • Iskandarani, M., D. B. Haidvogel, and J. P. Boyd, 1995: A staggered spectral element model with application to the oceanic shallow water equations. Int. J. Numer. Methods Fluids, 20, 393414.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., and M. C. Morgan, 2002: Dependence of singular vector structure and evolution on the choice of norm. J. Atmos. Sci., 59, 30993116.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., and B.-J. Jung, 2009: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137, 525543.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2004: The norm dependence of singular vectors. J. Atmos. Sci., 61, 29432949.

  • Kwon, Y. C., and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539.

  • Mureau, R., F. Molteni, and T. N. Palmer, 1993: Ensemble prediction using dynamically conditioned perturbations. Quart. J. Roy. Meteor. Soc., 119, 299323.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and B. F. Farrell, 1999: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 12871307.

    • Search Google Scholar
    • Export Citation
  • Orr, W. M., 1907: Stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: A perfect liquid. Proc. Roy. Irish Acad., 27, 969.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633653.

    • Search Google Scholar
    • Export Citation
  • Peng, J., T. Li, M. S. Peng, and X. Ge, 2009: Barotropic instability in the tropical cyclone outer region. Quart. J. Roy. Meteor. Soc., 135, 851864.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 25082528.

    • Search Google Scholar
    • Export Citation
  • Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709731.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223.

    • Search Google Scholar
    • Export Citation
  • Staley, D. O., and R. L. Gall, 1979: Barotropic instability in a tornado vortex. J. Atmos. Sci., 36, 973981.

  • Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787790.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., and S. J. Majumdar, 2010: Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Wea. Rev., 138, 36343655.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C.-C. Wu, 2009a: An observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev., 137, 28012816.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and T. Kadowaki, 2009b: Typhoon Ensemble Prediction System developed at the Japan Meteorological Agency. Mon. Wea. Rev., 137, 25922604.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 801 365 111
PDF Downloads 150 17 3