Monsoonal Influence on Typhoon Morakot (2009). Part I: Observational Analysis

Liguang Wu Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Liguang Wu in
Current site
Google Scholar
PubMed
Close
,
Jia Liang Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jia Liang in
Current site
Google Scholar
PubMed
Close
, and
Chun-Chieh Wu Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Chun-Chieh Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Typhoon Morakot made landfall on Taiwan with a record rainfall of 3031.5 mm during 6–13 August 2009. While previous studies have emphasized the influence of southwesterly winds associated with intraseasonal oscillations and monsoon surges on moisture supply, the interaction between Morakot and low-frequency monsoon flows and the resulting influence on the slow movement and asymmetric precipitation structure of the typhoon were examined observationally.

Embedded in multi-time-scale monsoonal flows, Morakot generally moved westward prior to its landfall on Taiwan and underwent a coalescence process first with a cyclonic gyre on the quasi-biweekly oscillation time scale and then with a cyclonic gyre on the Madden–Julian oscillation time scale. The coalescence enhanced the synoptic-scale southwesterly winds of Morakot and thus decreased its westward movement and turned the track northward, leading to an unusually long residence time in the vicinity of Taiwan. The resulting slow movement and collocation with the low-frequency gyres also maintained the major rainfall in southern Taiwan because the low-frequency flows played an important role in enhancing the winds on the southern side, especially during 6–9 August 2009. In addition to the lifting effect of the Taiwan terrain and the moisture supply associated with monsoon flows, the study suggests that the monsoonal influence maintained the major rainfall area in southern Taiwan through reducing the translation speed, shifting Morakot northward, and enhancing the low-frequency flows on the southern side of the typhoon. Since the enhanced low-frequency flows did not shift northward with the movement of Morakot, its primary rainfall expanded outward with time as the typhoon center moved northwestward after its landfall on Taiwan.

Corresponding author address: Dr. Liguang Wu, Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China. E-mail: liguang@nuist.edu.cn

Abstract

Typhoon Morakot made landfall on Taiwan with a record rainfall of 3031.5 mm during 6–13 August 2009. While previous studies have emphasized the influence of southwesterly winds associated with intraseasonal oscillations and monsoon surges on moisture supply, the interaction between Morakot and low-frequency monsoon flows and the resulting influence on the slow movement and asymmetric precipitation structure of the typhoon were examined observationally.

Embedded in multi-time-scale monsoonal flows, Morakot generally moved westward prior to its landfall on Taiwan and underwent a coalescence process first with a cyclonic gyre on the quasi-biweekly oscillation time scale and then with a cyclonic gyre on the Madden–Julian oscillation time scale. The coalescence enhanced the synoptic-scale southwesterly winds of Morakot and thus decreased its westward movement and turned the track northward, leading to an unusually long residence time in the vicinity of Taiwan. The resulting slow movement and collocation with the low-frequency gyres also maintained the major rainfall in southern Taiwan because the low-frequency flows played an important role in enhancing the winds on the southern side, especially during 6–9 August 2009. In addition to the lifting effect of the Taiwan terrain and the moisture supply associated with monsoon flows, the study suggests that the monsoonal influence maintained the major rainfall area in southern Taiwan through reducing the translation speed, shifting Morakot northward, and enhancing the low-frequency flows on the southern side of the typhoon. Since the enhanced low-frequency flows did not shift northward with the movement of Morakot, its primary rainfall expanded outward with time as the typhoon center moved northwestward after its landfall on Taiwan.

Corresponding author address: Dr. Liguang Wu, Pacific Typhoon Research Center, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China. E-mail: liguang@nuist.edu.cn
Save
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structures in the interior of hurricanes. J. Atmos. Sci., 54, 703724.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1985: A numerical study of the effect of a mountain range on a landfalling tropical cyclone. Mon. Wea. Rev., 113, 567582.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312.

    • Search Google Scholar
    • Export Citation
  • Brand, S., and J. W. Blelloch, 1973: Changes in the characteristics of typhoons crossing the Philippines. J. Appl. Meteor., 12, 104109.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 1942.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 31773191.

  • Carr, L. E., and R. L. Elsberry, 1995: Monsoonal interactions leading to sudden tropical cyclone track changes. Mon. Wea. Rev., 123, 265290.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. Chen, P. Harr, and L. Carr, 1996: Northwestward-propagating wave patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124, 22452266.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 12551270.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, M.-C. Yen, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646666.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312.

  • Chiao, S., and Y.-L. Lin, 2003: Numerical modeling of an orographically enhanced precipitation event associated with Tropical Storm Rachel over Taiwan. Wea. Forecasting, 18, 325344.

    • Search Google Scholar
    • Export Citation
  • Chien, F.-C., Y.-C. Liu, and C.-S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteor. Soc. Japan, 86, 1741.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects on environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 20442061.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269.

    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, S. Zhang, and M. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett., 11, 4650, doi:10.1002/asl.255.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328342.

  • Hong, C.-C., M.-Y. Lee, H.-H. Hsu, and J.-L. Kuo, 2010: Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in southern Taiwan. Geophys. Res. Lett., 37, L08805, doi:10.1029/2010GL042761.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and C.-H. Weng, 2001: Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism. J. Climate, 14, 38343850.

    • Search Google Scholar
    • Export Citation
  • Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598615.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. Part I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359.

  • Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July–August season. J. Meteor. Soc. Japan, 84, 871889.

    • Search Google Scholar
    • Export Citation
  • Ko, K.-C., and H.-H. Hsu, 2009: ISO modulation on the submonthly wave pattern and the recurving tropical cyclones in the tropical western North Pacific. J. Climate, 22, 582599.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 18881913.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-S., Y.-C. Liu, and F.-C. Chien, 2008: The secondary low and heavy rainfall associated with Typhoon Mindulle (2004). Mon. Wea. Rev., 136, 12601283.

    • Search Google Scholar
    • Export Citation
  • Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 22222235.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and H. H. Hendon, 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 14631479.

  • Lin, Y.-L., D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002: Orographic influence on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 29292950.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 18491866.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1975: Cloudiness fluctuations during summer monsoon. J. Meteor. Soc. Japan, 54, 175181.

  • Murakami, M., and M. Frydrych, 1974: On the preferred period of upper wind fluctuations during the summer monsoon. J. Atmos. Sci., 31, 15491555.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and C. W. Landsea, 1998: Normalized hurricane damages in the United States: 1925–95. Wea. Forecasting, 13, 621631.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wave number structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1978: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35, 242257.

  • Tuleya, R. E., M. A. Bender, and Y. Kurihara, 1984: A simulation study of the landfall of tropical cyclones using a movable nested-mesh model. Mon. Wea. Rev., 112, 124136.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332.

  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 15331549.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 10011015.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., K. K. W. Cheung, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 20492064.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2001a: Movement and vertical coupling of adiabatic baroclinic tropical cyclones. J. Atmos. Sci., 58, 18011814.

  • Wu, L., and B. Wang, 2001b: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 36393649.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 30653081.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zong, and J. Liang, 2011: Observational analysis of sudden tropical cyclone track changes in the vicinity of the East China Sea. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 30953115.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 31933213.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 32133233.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., L. Wu, and Q. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495.

  • Zhu, T., D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 742 265 24
PDF Downloads 506 143 8