The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

Peter P. Sullivan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter P. Sullivan in
Current site
Google Scholar
PubMed
Close
and
Edward G. Patton National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Edward G. Patton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A massively parallel large-eddy simulation (LES) code for planetary boundary layers (PBLs) that utilizes pseudospectral differencing in horizontal planes and solves an elliptic pressure equation is described. As an application, this code is used to examine the numerical convergence of the three-dimensional time-dependent simulations of a weakly sheared daytime convective PBL on meshes varying from 323 to 10243 grid points. Based on the variation of the second-order statistics, energy spectra, and entrainment statistics, LES solutions converge provided there is adequate separation between the energy-containing eddies and those near the filter cutoff scale. For the convective PBL studied, the majority of the low-order moment statistics (means, variances, and fluxes) become grid independent when the ratio zi/(CsΔf) > 310, where zi is the boundary layer height, Δf is the filter cutoff scale, and Cs is the Smagorinsky constant. In this regime, the spectra show clear Kolmogorov inertial subrange scaling. The bulk entrainment rate determined from the time variation of the boundary layer height we = dzi/dt is a sensitive measure of the LES solution convergence; we becomes grid independent when the vertical grid resolution is able to capture both the mean structure of the overlying inversion and the turbulence. For all mesh resolutions used, the vertical temperature flux profile varies linearly over the interior of the boundary layer and the minimum temperature flux is approximately −0.2 of the surface heat flux. Thus, these metrics are inadequate measures of solution convergence. The variation of the vertical velocity skewness and third-order moments expose the LES’s sensitivity to grid resolution.

Corresponding author address: Peter P. Sullivan, MMM Division, NCAR, Boulder, CO 80307–3000. E-mail: pps@ucar.edu

Abstract

A massively parallel large-eddy simulation (LES) code for planetary boundary layers (PBLs) that utilizes pseudospectral differencing in horizontal planes and solves an elliptic pressure equation is described. As an application, this code is used to examine the numerical convergence of the three-dimensional time-dependent simulations of a weakly sheared daytime convective PBL on meshes varying from 323 to 10243 grid points. Based on the variation of the second-order statistics, energy spectra, and entrainment statistics, LES solutions converge provided there is adequate separation between the energy-containing eddies and those near the filter cutoff scale. For the convective PBL studied, the majority of the low-order moment statistics (means, variances, and fluxes) become grid independent when the ratio zi/(CsΔf) > 310, where zi is the boundary layer height, Δf is the filter cutoff scale, and Cs is the Smagorinsky constant. In this regime, the spectra show clear Kolmogorov inertial subrange scaling. The bulk entrainment rate determined from the time variation of the boundary layer height we = dzi/dt is a sensitive measure of the LES solution convergence; we becomes grid independent when the vertical grid resolution is able to capture both the mean structure of the overlying inversion and the turbulence. For all mesh resolutions used, the vertical temperature flux profile varies linearly over the interior of the boundary layer and the minimum temperature flux is approximately −0.2 of the surface heat flux. Thus, these metrics are inadequate measures of solution convergence. The variation of the vertical velocity skewness and third-order moments expose the LES’s sensitivity to grid resolution.

Corresponding author address: Peter P. Sullivan, MMM Division, NCAR, Boulder, CO 80307–3000. E-mail: pps@ucar.edu
Save
  • Andren, A., A. R. Brown, P. J. Mason, J. Graf, U. Schumann, C.-H. Moeng, and F. T. M. Nieuwstadt, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 14571484.

    • Search Google Scholar
    • Export Citation
  • Aoyama, Y., and J. Nakano, 1999: RS/6000 SP: Practical MPI programming. Tech. Rep. IBM Redbook SG24-5380-00, International Business Machines, 221 pp.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 242272.

    • Search Google Scholar
    • Export Citation
  • Beets, C., and B. Koren, 1996: Large-eddy simulation with accurate implicit subgrid-scale diffusion. Department of Numerical Mathematics Rep. NM-R9601, Utrecht University, 24 pp.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1974: Reply to comment on the paper ‘Non-precipitating cumulus convection and its parameterization.’ Quart. J. Roy. Meteor. Soc., 100, 469471.

    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and T. Wei, 2010: Designing large eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids,22, 021303, doi:10.1063/1.3319073.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 554, 391423.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Celik, I., M. Klein, M. Freitag, and J. Janicka, 2006: Assessment measures for URANS/DES/LES: An overview with applications. J. Turbul., 7, 127.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., and P. Moin, 2003: A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184, 366380.

  • Davis, K. J., N. Gamage, C. R. Hagelberg, D. H. L. C. Kiemle, and P. P. Sullivan, 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17, 14551468.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972a: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115.

  • Deardorff, J. W., 1972b: Three-dimensional numerical modeling of the planetary boundary layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 271–311.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • de Roode, S. R., P. G. Duynkerke, and H. J. J. Jonker, 2004: Large eddy simulation: How large is large enough? J. Atmos. Sci., 61, 403421.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., F. T. M. Nieuwstadt, and R. Kaiser, 2001: Numerical and laboratory study of a horizontally evolving convective boundary layer. Part I: Transition regimes and development of the mixed layer. J. Atmos. Sci., 58, 7086.

    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and Coauthors, 2004: Entrainment into sheared convective boundary layers as predicted by different large eddy simulation codes. Preprints, 16th Symp. on Boundary Layer and Turbulence, Portland, ME, Amer. Meteor. Soc., P4.7.

    • Search Google Scholar
    • Export Citation
  • Geurts, B. J., 2001: Modern Simulation Strategies for Turbulent Flow. R. T. Edwards, 327 pp.

  • Geurts, B. J., and J. Fröhlich, 2002: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids, 14, L41L44.

    • Search Google Scholar
    • Export Citation
  • Gibbs, W. R., 2004: A parallel/recursive algorithm. J. Comput. Phys., 201, 573585.

  • Hatlee, S. C., and J. C. Wyngaard, 2007: Improved subfilter-scale models from the HATS field data. J. Atmos. Sci., 64, 16941705.

  • Hunt, J. C. R., J. C. Kaimal, and J. E. Gaynor, 1988: Eddy structure in the convective boundary layer—New measurements and new concepts. Quart. J. Roy. Meteor. Soc., 482, 827858.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Mesoscale fluctuations in scalars generated by boundary layer convection. J. Atmos. Sci., 56, 801808.

    • Search Google Scholar
    • Export Citation
  • Kaltenbach, H.-J., 1997: Cell aspect ratio dependence of anisotropy measures for resolved and subgrid scale stresses. J. Comput. Phys., 136, 399410.

    • Search Google Scholar
    • Export Citation
  • Kanak, K. M., 2005: Numerical simulation of dust devil–scale vortices. Quart. J. Roy. Meteor. Soc., 131, 12711292.

  • Klemp, J., and D. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430444.

    • Search Google Scholar
    • Export Citation
  • Koren, B., 1993: A robust upwind discretization method for advection, diffusion and source terms. Notes on Numerical Fluid Mechanics, Vol. 45, C. B. Vreugdenhil and B. Koren, Eds., Vieweg-Braunschweig, 117–138.

    • Search Google Scholar
    • Export Citation
  • Lele, S. K., 1992: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys., 103, 1642.

  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11, 661673.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., M. Lothon, S. D. Mayor, P. P. Sullivan, and G. Canut, 2011: A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with in situ measurements and LES. Bound.-Layer Meteor., doi:10.1007/s10546-011-9615-3, in press.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, International Business Machines, 195–210.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, and S. D. Mayor, 2009: Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Bound.-Layer Meteor., 132, 205226.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, G. Canut, S. D. Mayor, and P. P. Sullivan, 2010: Measurements of higher-order turbulence statistics in the daytime convective boundary layer derived from a ground-based Doppler lidar. Proc. Int. Symp. for the Advancement of Boundary Layer Remote Sensing, Paris, France, ISARS. [Available online at http://www.isars2010.uvsq.fr/images/stories/PosterExtAbstracts/P_TUR03_Lothon.pdf.]

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather Research and Forecasting model. Mon. Wea. Rev., 138, 796817.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and A. R. Brown, 1999: On subgrid models and filter operations in large-eddy simulations. J. Atmos. Sci., 56, 21012114.

    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulations. Annu. Rev. Fluid Mech., 32, 132.

  • Meyers, J., B. J. Geurts, and P. Sagaut, 2007: A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J. Comput. Phys., 227, 156173.

    • Search Google Scholar
    • Export Citation
  • Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, 2005: The Weather Research and Forecast Model: Software architecture and performance. Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and G. Mozdzynski, Eds., World Scientific, 156–168.

    • Search Google Scholar
    • Export Citation
  • Mironov, D. V., 2009: Turbulence in the lower troposphere: Second-order closure and mass-flux modelling frameworks. Interdisciplinary Aspects of Turbulence, W. Hillebrandt and F. Kupka, Eds., Lecture Notes in Physics, Vol. 756, Springer-Verlag, 161–221.

    • Search Google Scholar
    • Export Citation
  • Mironov, D. V., V. M. Gryanik, C.-H. Moeng, D. J. Olbers, and T. H. Warncke, 2000: Vertical turbulence structure and second-moment budgets in convection with rotation: A large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 126, 477515.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1988: Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci., 45, 35733587.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and R. Rotunno, 1990: Vertical velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47, 11491162.

  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 2002: Large-eddy simulation. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Academic Press, 1140–1150.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., M. A. LeMone, M. F. Khairoutdinov, S. K. Krueger, P. A. Bogenschutz, and D. A. Randall, 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst., 1 (16), doi:10.3894/JAMES.2009.1.16.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., 1996: A similarity theory of locally homogenous and isotropic turbulence generated by a Smagorinsky-type LES. J. Fluid Mech., 325, 239260.

    • Search Google Scholar
    • Export Citation
  • National Science Foundation, 2007: Cyberinfrastructure vision for 21st century discovery. Tech. Rep. NSF 07–28, NSF Cyberinfrastructure Council. [Available online at http://www.nsf.gov/pubs/2007/nsf0728/index.jsp.]

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., P. J. Mason, C. H. Moeng, and U. Schumann, 1993: Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. Turbulent Shear Flows 8, F. Durst, Ed., Springer-Verlag, 343–367.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097.

    • Search Google Scholar
    • Export Citation
  • Pekurovsky, D., P. K. Yeung, D. Donzis, W. Pfeiffer, and G. Chukkapallli, 2006: Scalability of a pseudospectral DNS turbulence code with 2D domain decomposition on Power4+/Federation and Blue Gene systems. ScicomP12 and SP-XXL, Boulder, CO, International Business Machines. [Available online at http://www.spscicomp.org/ScicomP12/Presentations/User/Pekurovsky.pdf.]

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10, 363372.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., C. Meneveau, and D. K. Lilly, 1993: Generalized Smagorinsky model for anisotropic grids. Phys. Fluids A, 5, 23062308.

  • Silva Lopes, A., and J. M. L. M. Palma, 2002: Numerical simulation of isotropic turbulence using a collocated approach and a nonorthogonal grid system. J. Comput. Phys., 175, 713738.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., R. D. Moser, and M. M. Rogers, 1991: Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96, 297324.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., A. Bershadskii, and J. J. Niemela, 2002: Mean wind and its reversal in thermal convection. Phys. Rev. E, 65, 056306, doi:10.1103/PhysRevE.65.056306.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1996: A grid nesting method for large-eddy simulation of planetary boundary layer flows. Bound.-Layer Meteor., 80, 167202.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C.-H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modeling. J. Fluid Mech., 482, 101139.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above non-equilibrium surface waves. J. Atmos. Sci., 65, 12251245.

    • Search Google Scholar
    • Export Citation
  • Tong, C., J. C. Wyngaard, S. Khanna, and J. G. Brasseur, 1998: Resolvable- and subgrid-scale measurement in the atmospheric surface layer: Technique and issues. J. Atmos. Sci., 55, 31143126.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

  • Weil, J. C., 1988: Dispersion in the convective boundary layer. Lectures on Air Pollution Modeling, A. Venkatram and J. Wyngaard, Eds., Amer. Meteor. Soc., 167–227.

    • Search Google Scholar
    • Export Citation
  • Weil, J. C., 1990: A diagnosis of the asymmetry in top-down and bottom-up diffusion in a Lagrangian stochastic model. J. Atmos. Sci., 47, 501515.

    • Search Google Scholar
    • Export Citation
  • Werne, J., and D. C. Fritts, 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26, 439442.

  • Wyngaard, J. C., 1998: Boundary-layer modeling: History, philosophy, and sociology. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 325–332.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004a: Changing the face of small-scale meteorology. Atmospheric Turbulence and Mesoscale Meteorology, E. Federovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 17–34.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004b: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826.

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4385 1607 316
PDF Downloads 2482 505 58