• Balaji, V., , and T. L. Clark, 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45, 31893211.

    • Search Google Scholar
    • Export Citation
  • Balaji, V., , J.-L. Redelsperger, , and G. P. Klaassen, 1993: Mechanisms for the mesoscale organization of tropical cloud clusters in GATE Phase III. Part I: Shallow cloud bands. J. Atmos. Sci., 50, 35713589.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence, and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., , T. L. Clark, , and W. D. Hall, 1994: Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci., 51, 4867.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., 2010: Gravity waves, dynamical resistance, and forcing efficiency. J. Atmos. Sci., 67, 20392051.

  • Clark, T. L., 1977: A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput. Phys., 24, 186215.

  • Clark, T. L., , W. D. Hall, , and J. L. Coen, 1996: Source code documentation for the Clark-Hall cloudscale model: Code version G3CH01. NCAR Tech. Note NCAR/TN-426+STR, 137 pp.

    • Search Google Scholar
    • Export Citation
  • Cohen, B. G., , and G. C. Craig, 2004: The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc., 130, 933944.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall-lines. Quart. J. Roy. Meteor. Soc., 128, 893912.

  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., , B. S. Ferrier, , T. M. Rickenbach, , J. Simpson, , and W.-K. Tao, 1999: An ensemble of convective systems on 11 February 1993 during TOGA COARE: Morphology, rainfall characteristics, and anvil cloud interactions. Mon. Wea. Rev., 127, 12081228.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , J. H. Beres, , and X. Zhou, 2002: On the vertical scale of gravity waves excited by localized thermal forcing. J. Atmos. Sci., 59, 20192023.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., , S. D. Eckermann, , and H.-Y. Chun, 2003: An overview of past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., , F. Zhang, , M. L. Kaplan, , Y.-L. Lin, , R. Weglarz, , and C. M. Trexler, 2001: Numerical simulation of a gravity wave event observed during CCOPE. Part III: Mountain–plain solenoids in the generation of the second wave episode. Mon. Wea. Rev., 129, 909932.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., , and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15, 747762.

    • Search Google Scholar
    • Export Citation
  • Küpper, C., , J. Thuburn, , G. C. Craig, , and T. Birner, 2004: Mass and water transport into the tropical stratosphere: A cloud-resolving simulation. J. Geophys. Res., 109, D10111, doi:10.1029/2004JD004541.

    • Search Google Scholar
    • Export Citation
  • Lac, C., , J.-P. Lafore, , and J.-L. Redelsperger, 2002: Role of gravity waves in triggering deep convection during TOGA-COARE. J. Atmos. Sci., 59, 12931316.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., 2008: The vortical response to penetrative convection and the associated gravity wave generation. Atmos. Sci. Lett., 9, 103110.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and M. J. Reeder, 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 24272440.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and M. W. Moncrieff, 2008: Stratospheric gravity waves generated by multiscale tropical convection. J. Atmos. Sci., 65, 25982614.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and M. W. Moncrieff, 2010: Characterization of momentum transport associated with organized moist convection and gravity waves. J. Atmos. Sci., 67, 32083225.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , M. J. Reeder, , and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179.

  • Lindzen, R. S., , and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617.

  • Liu, C., , and M. W. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci., 61, 22182227.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037.

  • Marsham, J. H., , and D. J. Parker, 2006: Secondary initiation of multiple bands of cumulonimbus over southern Britain. II: Dynamics of secondary initiation. Quart. J. Roy. Meteor. Soc., 132, 10531072.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., , J. E. Nachamkin, , W. R. Cotton, , and M. E. Nicholls, 1997: Upscale evolution of MCSs: Doppler radar analysis and analytical investigation. Mon. Wea. Rev., 125, 10831110.

    • Search Google Scholar
    • Export Citation
  • Monserrat, S., , and A. J. Thorpe, 1996: Use of ducting theory in an observed case of gravity waves. J. Atmos. Sci., 53, 17241736.

  • Morcrette, C. J., , K. A. Browning, , A. M. Blyth, , K. E. Bozier, , P. A. Clark, , D. Ladd, , E. G. Norton, , and E. Pavelin, 2006: Secondary initiation of multiple bands of cumulonimbus over southern Britain. I: An observational case-study. Quart. J. Roy. Meteor. Soc., 132, 10211051.

    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., 1986: Wave-CISK in a baroclinic basic state. J. Atmos. Sci., 43, 27732791.

  • Nicholls, M. E., , R. A. Pielke, , and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., , and Y. Hayashi, 2000: Gravity-wave dynamics of the hierarchical structure of super cloud clusters. J. Meteor. Soc. Japan, 78, 301331.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., 1999: Hierarchical organization of super cloud cluster caused by WISHE, convectively induced gravity wave and cold pool, 1999. J. Meteor. Soc. Japan, 77, 907927.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., , and M. J. Alexander, 1999: Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci., 56, 24342446.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., , D. R. Durran, , and M. L. Weisman, 2000: The influence of convective thermal forcing on the three-dimensional circulation around squall lines. J. Atmos. Sci., 57, 2945.

    • Search Google Scholar
    • Export Citation
  • Peng, L., , C.-H. Sui, , K.-M. Lau, , and W.-K. Tao, 2001: Genesis and evolution of hierarchical cloud clusters in a two-dimensional cumulus-resolving model. J. Atmos. Sci., 58, 877895.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., , and S. Businger, 2009: Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833848.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and R. J. Reed, 1993: Numerical simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 121, 22852308.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1987: A forced gravity wave model of self-organizing convection. J. Atmos. Sci., 44, 35283543.

  • Robinson, F. J., , S. C. Sherwood, , and Y. Li, 2008: Resonant response of deep convection to surface hot spots. J. Atmos. Sci., 65, 276286.

    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., , and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 12051222.

    • Search Google Scholar
    • Export Citation
  • Shige, S., 1999: Disturbances of 1-2 hour periods observed in the tropical lower troposphere during the TOGA-COARE IOP. J. Meteor. Soc. Japan, 77, 11231136.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , and T. Satomura, 2000: The gravity wave response in the troposphere around deep convection. J. Meteor. Soc. Japan, 78, 789801.

    • Search Google Scholar
    • Export Citation
  • Shige, S., , and T. Satomura, 2001: Westward generation of eastward-moving tropical convective bands in TOGA COARE. J. Atmos. Sci., 58, 37243740.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., , H.-Y. Chun, , and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60, 19601980.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., , and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66, 25792599.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., , and G. C. Craig, 1998: Radiative–convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124, 20732097.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140155.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , D. A. Randall, , and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud resolving model. J. Atmos. Sci., 64, 12101229.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , S. E. Koch, , C. A. Davis, , and M. L. Kaplan, 2001: Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 29
PDF Downloads 121 121 27

Coupling between Gravity Waves and Tropical Convection at Mesoscales

View More View Less
  • 1 School of Earth Sciences, The University of Melbourne, Melbourne, Victoria, Australia
  • | 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

An idealized cloud-system-resolving model simulation is used to examine the coupling between a tropical cloud population and the mesoscale gravity waves that it generates. Spectral analyses of the cloud and gravity wave fields identify a clear signal of coupling between the clouds and a deep tropospheric gravity wave mode with a vertical wavelength that matches the depth of the convection, which is about two-thirds of the tropospheric depth. This vertical wavelength and the period of the waves, defined by a characteristic convective time scale, means that the horizontal wavelength is constrained through the dispersion relation. Indeed, the wave–convection coupling manifests at the appropriate wavelength, with the emergence of quasi-regular cloud-system spacing of order 100 km. It is shown that cloud systems at this spacing achieve a quasi-resonant state, at least for a few convective life cycles. Such regular spacing is a key component of cloud organization and is likely a contributor to the processes controlling the upscale growth of convective systems. Other gravity wave processes are also elucidated, including their apparent role in the maintenance of convective systems by providing a mechanism for renewed convective activity and system longevity.

Corresponding author address: Todd Lane, School of Earth Sciences, The University of Melbourne, Melbourne VIC 3010, Australia. E-mail: tplane@unimelb.edu.au

Abstract

An idealized cloud-system-resolving model simulation is used to examine the coupling between a tropical cloud population and the mesoscale gravity waves that it generates. Spectral analyses of the cloud and gravity wave fields identify a clear signal of coupling between the clouds and a deep tropospheric gravity wave mode with a vertical wavelength that matches the depth of the convection, which is about two-thirds of the tropospheric depth. This vertical wavelength and the period of the waves, defined by a characteristic convective time scale, means that the horizontal wavelength is constrained through the dispersion relation. Indeed, the wave–convection coupling manifests at the appropriate wavelength, with the emergence of quasi-regular cloud-system spacing of order 100 km. It is shown that cloud systems at this spacing achieve a quasi-resonant state, at least for a few convective life cycles. Such regular spacing is a key component of cloud organization and is likely a contributor to the processes controlling the upscale growth of convective systems. Other gravity wave processes are also elucidated, including their apparent role in the maintenance of convective systems by providing a mechanism for renewed convective activity and system longevity.

Corresponding author address: Todd Lane, School of Earth Sciences, The University of Melbourne, Melbourne VIC 3010, Australia. E-mail: tplane@unimelb.edu.au
Save