• Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Berg, W., , T. L’Ecuyer, , and S. van den Heever, 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res., 113, D14S23, doi:10.1029/2007JD009649.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., , H. Pawlowska, , L. Schüller, , R. Preusker, , J. Fischer, , and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., , and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107, 4257, doi:10.1029/2001JD000766.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Dufresne, J.-L., , and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 23252342.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. L. Walko, , B. Stevens, , and W. R. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48, 505528.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , R. T. Marchand, , Z. Luo, , A. Bodas-Salcedo, , and G. L. Stephens, 2007: A multipurpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231727.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , T. S. L’Ecuyer, , G. L. Stephens, , S. D. Miller, , C. Mitrescu, , N. B. Wood, , and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , M. Satoh, , Y. Hagihara, , H. Miura, , and J. Schmetz, 2010: Comparison of high-level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., , T. Nakajima, , and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14, 20542068.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , M. Ovtchinnikov, , M. Pinsky, , A. Pokrovsky, , and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., , D. L. Hartmann, , and R. Wood, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J. Atmos. Sci., 66, 29532972.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., , G. L. Stephens, , and C. Kummerow, 2008: Multisensor satellite observations of aerosol effects on warm clouds. J. Geophys. Res., 113, D15205, doi:10.1029/2008JD009876.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , W. Berg, , J. Haynes, , M. Lebsock, , and T. Takemura, 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, doi:10.1029/2008JD011273.

    • Search Google Scholar
    • Export Citation
  • Leon, D. C., , Z. Wang, , and D. Liu, 2008: Climatology of drizzle in marine boundary layer clouds based on 1 year of data from CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). J. Geophys. Res., 113, D00A14, doi:10.1029/2008JD009835.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , R. Marchand, , Q. Zhang, , and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , G. G. Mace, , T. Ackerman, , and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , M. Satoh, , and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., , R. L. Walko, , J. Y. Harrington, , and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden–Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., , and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52, 40434059.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., , K. Suzuki, , and G. L. Stephens, 2010a: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet sizes. J. Atmos. Sci., 67, 18841896.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., , K. Suzuki, , and G. L. Stephens, 2010b: Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view. J. Atmos. Sci., 67, 18971907.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., , and J.-L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108, 8630, doi:10.1029/2002JD002679.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991.

  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105, 22 91922 935.

  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. Elsevier, 293 pp.

  • Saleeby, S. M., , and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , W. Berg, , S. van den Heever, , and T. L’Ecuyer, 2010: Impact of cloud-nucleating aerosols in cloud-resolving model simulations of warm-rain precipitation in the East China Sea. J. Atmos. Sci., 67, 39163930.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Inoue, , and H. Miura, 2010: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Stephens, G. L., , and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. Geophys. Res. Lett., 34, L20805, doi:10.1029/2007GL030259.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Stephens, G. L., and Coauthors, 2008: The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , T. L’Ecuyer, , R. Forbes, , A. Gettleman, , C. Golaz, , K. Suzuki, , P. Gabriel, , and J. Haynes, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , and G. L. Stephens, 2008: Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett., 35, L08805, doi:10.1029/2008GL033590.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , and G. L. Stephens, 2009: Relationship between radar reflectivity and the time scale of warm rain formation in a global cloud-resolving model. Atmos. Res., 92, 411419.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , A. Numaguti, , T. Takemura, , K. Kawamoto, , and A. Higurashi, 2004: A study of the aerosol effect on a cloud field with simultaneous use of GCM modeling and satellite observation. J. Atmos. Sci., 61, 179194.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , M. Satoh, , H. Tomita, , T. Takemura, , T. Y. Nakajima, , and G. L. Stephens, 2008: Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys. Res. Lett., 35, L19817, doi:10.1029/2008GL035449.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Y. Nakajima, , and G. L. Stephens, 2010: Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci., 67, 30193032.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , H. Okamoto, , Y. Maruyama, , A. Numaguti, , A. Higurashi, , and T. Nakajima, 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res., 105, 17 85317 873.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nakajima, , O. Dubovik, , B. N. Holben, , and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15, 333352.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., , S. L. Durden, , E. Im, , K. S. Pak, , D. G. Reinke, , P. Partain, , J. M. Haynes, , and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , G. L. Stephens, , and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., , B. Stevens, , G. Vali, , and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , T. Kubar, , and D. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 8
PDF Downloads 57 57 7

Diagnosis of the Warm Rain Process in Cloud-Resolving Models Using Joint CloudSat and MODIS Observations

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 4 Research and Information Center, Tokai University, Tokyo, Japan
© Get Permissions
Restricted access

Abstract

This study examines the warm rain formation process in global and regional cloud-resolving models. Methodologies developed to analyze CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations are employed to investigate the cloud-to-precipitation processes and are applied to model results for comparisons with corresponding statistics from the observations. Three precipitation categories of no precipitation, drizzle, and rain are defined according to nonattenuated near-surface radar reflectivity, and their fractional occurrences and the probability of precipitation are investigated as a function of cloud properties such as droplet size, optical thickness, droplet number concentration, and liquid water path. The comparisons reveal how the models are qualitatively similar to, but quantitatively different from, observations in terms of cloud-to-rainwater conversion processes. Statistics from one model reveal a much faster formation of rain than observed, with drizzle occurrence being much less frequent, whereas statistics from the other model illustrate rain formation closer to satellite observations but still faster formation of drizzle water. Vertical profiles of radar reflectivity that are rescaled as a function of in-cloud optical depth and classified according to particle size are also compared. The results show that each model indicates systematically faster formation of rain and drizzle, respectively, than observed in vertical profiles although they indicate that the cloud-to-rain transitions are qualitatively similar to observations. These results characterize the model behavior in terms of warm cloud microphysics and then point to a possible area of model improvement for more realistic representation of warm rain formation processes.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

Corresponding author address: Kentaroh Suzuki, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: kentaro.suzuki@jpl.nasa.gov

Abstract

This study examines the warm rain formation process in global and regional cloud-resolving models. Methodologies developed to analyze CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations are employed to investigate the cloud-to-precipitation processes and are applied to model results for comparisons with corresponding statistics from the observations. Three precipitation categories of no precipitation, drizzle, and rain are defined according to nonattenuated near-surface radar reflectivity, and their fractional occurrences and the probability of precipitation are investigated as a function of cloud properties such as droplet size, optical thickness, droplet number concentration, and liquid water path. The comparisons reveal how the models are qualitatively similar to, but quantitatively different from, observations in terms of cloud-to-rainwater conversion processes. Statistics from one model reveal a much faster formation of rain than observed, with drizzle occurrence being much less frequent, whereas statistics from the other model illustrate rain formation closer to satellite observations but still faster formation of drizzle water. Vertical profiles of radar reflectivity that are rescaled as a function of in-cloud optical depth and classified according to particle size are also compared. The results show that each model indicates systematically faster formation of rain and drizzle, respectively, than observed in vertical profiles although they indicate that the cloud-to-rain transitions are qualitatively similar to observations. These results characterize the model behavior in terms of warm cloud microphysics and then point to a possible area of model improvement for more realistic representation of warm rain formation processes.

Current affiliation: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

Corresponding author address: Kentaroh Suzuki, Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: kentaro.suzuki@jpl.nasa.gov
Save