• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374.

    • Search Google Scholar
    • Export Citation
  • Charron, M., , and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941.

    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., , H.-Y. Chun, , and I.-S. Song, 2009: Gravity wave temperature variance calculated using the ray-based spectral parameterization of convective gravity waves and its comparison with Microwave Limb Sounder observations. J. Geophys. Res., 114, D08111, doi:10.1029/2008JD011330.

    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., , I.-S. Song, , J.-J. Baik, , and Y.-J. Kim, 2004: Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. J. Climate, 18, 35303547.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., , A. I. Jonsson, , J. de Grandpré, , S. R. Beagley, , C. McLandress, , K. Semeniuk, , and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20, 11211144.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , M. McIntyre, , T. Shepherd, , C. Marks, , and K. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1990: On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 47, 392395.

  • Holton, J. R., , P. Haynes, , M. McIntyre, , A. Douglass, , R. Rood, , and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439.

    • Search Google Scholar
    • Export Citation
  • Jeon, J.-H., , S.-Y. Hong, , H.-Y. Chun, , and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pac. J. Atmos. Sci., 46, 110.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., , and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperature. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419.

    • Search Google Scholar
    • Export Citation
  • Li, F., , J. Austin, , and J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21, 4057.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , K. Sato, , S. Watanabe, , Y. Tomikawa, , Y. Kawatani, , and M. Takahashi, 2010: Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics. J. Atmos. Sci., 67, 13151336.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperature. Part II: Model results. J. Atmos. Sci., 63, 14201431.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., , K. Sato, , and H. Akiyoshi, 2011: A study on the formation and trend of the Brewer–Dobson circulation. J. Geophys. Res., 116, D10117, doi:10.1029/2010JD014953.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., , M. R. Schoeberl, , and J. E. Nielsen, 2007: Response of stratospheric circulation and stratosphere–troposphere exchange to changing sea surface temperature. J. Geophys. Res., 112, D16104, doi:10.1029/2006JD008012.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., , and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , F. Wu, , and W. R. Rios, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108, 4024, doi:10.1029/2002JD002595.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595.

  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156.

    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., , and S. Lee, 2010: Effect of tropical waves on the tropical tropopause transition layer upwelling. J. Atmos. Sci., 67, 31303148.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , R. R. Garcia, , B. A. Boville, , and H. Liu, 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107, 4380, doi:10.1029/2001JD001525.

    • Search Google Scholar
    • Export Citation
  • Shea, D. J., , K. E. Trenberth, , and R. W. Reynolds, 1992: A global monthly sea surface temperature climatology. J. Climate, 5, 9871001.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., , and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107124.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., , and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 12041224.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., , H.-Y. Chun, , R. R. Garcia, , and B. Boville, 2007: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part II: Impacts in a GCM (WACCM). J. Atmos. Sci., 64, 22862308.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., , and D. A. Ortland, 2003: Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project. J. Geophys. Res., 108, 4615, doi:10.1029/2002JD003135.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2009: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part I: Annual cycle. J. Atmos. Sci., 66, 20292043.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2010: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part II: ENSO-induced changes in northern winter. J. Atmos. Sci., 67, 543555.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2009: Understanding recent stratospheric climate change. J. Climate, 22, 19341943.

  • Wang, W.-C., , X. Liang, , M. P. Dudek, , D. Pollard, , and S. L. Thompson, 1995: Atmospheric ozone as a climate gas. Atmos. Res., 37, 247256.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 2
PDF Downloads 10 10 0

Influence of Gravity Waves in the Tropical Upwelling: WACCM Simulations

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

The annual cycle of tropical upwelling and contributions by planetary and gravity waves are investigated from climatological simulations using the Whole Atmosphere Community Climate Model (WACCM) including three gravity wave drag (GWD) parameterizations (orographic, nonstationary background, and convective GWD parameterizations). The tropical upwelling is estimated by the residual mean vertical velocity at 100 hPa averaged over 15°S–15°N. This is well matched with an upwelling estimate from the balance of the zonal momentum and the mass continuity. A clear annual cycle of the tropical upwelling is found, with a Northern Hemispheric (NH) wintertime maximum and NH summertime minimum determined primarily by the Eliassen–Palm flux divergence (EPD), along with a secondary contribution from the zonal wind tendency. Gravity waves increase tropical upwelling throughout the year, and of the three sources the contribution by convective gravity wave drag (CGWD) is largest in most months. The relative contribution by all three GWDs to tropical upwelling is not larger than 5%. However, when tropical upwelling is estimated by net upward mass flux between turnaround latitudes where upwelling changes downwelling, annual mean contribution by all three GWDs is up to 19% at 70 hPa by orographic and convective gravity waves with comparable magnitudes. Effects of CGWD on upwelling are investigated by conducting an additional WACCM simulation without CGWD parameterization. It was found that including CGWD parameterization increases tropical upwelling not only directly by adding CGWD forcing, but also indirectly by modulating EPD and zonal wind tendency terms in the tropics.

Corresponding author address: Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: chunhy@yonsei.ac.kr

Abstract

The annual cycle of tropical upwelling and contributions by planetary and gravity waves are investigated from climatological simulations using the Whole Atmosphere Community Climate Model (WACCM) including three gravity wave drag (GWD) parameterizations (orographic, nonstationary background, and convective GWD parameterizations). The tropical upwelling is estimated by the residual mean vertical velocity at 100 hPa averaged over 15°S–15°N. This is well matched with an upwelling estimate from the balance of the zonal momentum and the mass continuity. A clear annual cycle of the tropical upwelling is found, with a Northern Hemispheric (NH) wintertime maximum and NH summertime minimum determined primarily by the Eliassen–Palm flux divergence (EPD), along with a secondary contribution from the zonal wind tendency. Gravity waves increase tropical upwelling throughout the year, and of the three sources the contribution by convective gravity wave drag (CGWD) is largest in most months. The relative contribution by all three GWDs to tropical upwelling is not larger than 5%. However, when tropical upwelling is estimated by net upward mass flux between turnaround latitudes where upwelling changes downwelling, annual mean contribution by all three GWDs is up to 19% at 70 hPa by orographic and convective gravity waves with comparable magnitudes. Effects of CGWD on upwelling are investigated by conducting an additional WACCM simulation without CGWD parameterization. It was found that including CGWD parameterization increases tropical upwelling not only directly by adding CGWD forcing, but also indirectly by modulating EPD and zonal wind tendency terms in the tropics.

Corresponding author address: Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea. E-mail: chunhy@yonsei.ac.kr
Save