• Abramowitz, M., , and I. A. Stegun, 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1046 pp.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1985: Sudden stratospheric warmings as catastrophes. J. Atmos. Sci., 42, 16311646.

  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and Coauthors, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20, 470488.

    • Search Google Scholar
    • Export Citation
  • Chen, P., 1996: The influences of zonal flow on wave breaking and tropical–extratropical interaction in the lower stratosphere. J. Atmos. Sci., 53, 23792392.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1986: The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech., 172, 157182.

  • Dritschel, D. G., 1988: Contour surgery: A topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys., 77, 240266.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1990: The stability of elliptical vortices in an external straining flow. J. Fluid Mech., 210, 223261.

  • Dritschel, D. G., , and R. Saravanan, 1994: Three-dimensional quasi-geostrophic contour dynamics, with an application to stratospheric vortex dynamics. Quart. J. Roy. Meteor. Soc., 120, 12671297.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., 2004: Benjamin–Feir instability of Rossby waves on a jet. Quart. J. Roy. Meteor. Soc., 130, 16111630.

  • Esler, J. G., , and R. K. Scott, 2005: Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci., 62, 36613682.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., , and N. J. Matthewman, 2011: Stratospheric sudden warmings as self-tuning resonances. Part II: Vortex displacement events. J. Atmos. Sci., 68, 25052523.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., , L. M. Polvani, , and R. K. Scott, 2006: The Antarctic sudden stratospheric warming of 2002: A self-tuned resonance? Geophys. Res. Lett., 33, L12804, doi:10.1029/2006GL026034.

    • Search Google Scholar
    • Export Citation
  • Hio, Y., , and S. Yoden, 2007: A parameter sweep experiment on quasiperiodic variations of a polar vortex due to wave–wave interaction in a spherical barotropic model. J. Atmos. Sci., 64, 40694083.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 22182225.

  • Kida, S., 1981: Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan, 50, 35173520.

  • Limpasuvan, V., , D. W. J. Thompson, , and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596.

    • Search Google Scholar
    • Export Citation
  • Love, A. E. H., 1893: On the stability of certain vortex motions. Proc. London Math. Soc., 23, 1842.

  • Manney, G. L., , J. D. Farrara, , and C. R. Mechoso, 1994: Simulations of the February 1979 stratospheric sudden warming: Model comparisons and three-dimensional evolution. Mon. Wea. Rev., 122, 11151140.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., , W. A. Lahoz, , R. Swinbank, , A. O’Neill, , P. M. Connew, , and R. W. Zurek, 1999: Simulation of the December 1998 stratospheric major warming. Geophys. Res. Lett., 26, 27332736.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494.

  • Matthewman, N. J., , J. G. Esler, , A. J. Charlton-Perez, , and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., , N. J. Zabusky, , and A. S. Styczek, 1986: A moment model for vortex interactions of the two-dimensional Euler equations. Part 1. Computational validation of a Hamiltonian elliptical representation. J. Fluid Mech., 167, 95115.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. B., , and L. F. Rossi, 2008: The evolution of Kirchhoff elliptic vortices. Phys. Fluids, 20, 054103, doi:10.1063/1.2912991.

  • Nayfeh, A. H., , and D. T. Mook, 1979: Nonlinear Oscillations. Wiley, 704 pp.

  • O’Neill, A., 2003: Stratospheric sudden warmings. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Elsevier, 1342–1353.

    • Search Google Scholar
    • Export Citation
  • Penfold, R., , J.-M. Vanden-Broeck, , and S. Grandison, 2007: Monotonicity of some modified Bessel function products. Integr. Transforms Spec. Funct., 18, 139144.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1981a: Forced waves in a baroclinic shear flow. Part 2: Damped and undamped response to weak near-resonant forcing. J. Atmos. Sci., 38, 18561869.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1981b: Instability of the distorted polar night vortex: A theory of stratospheric warmings. J. Atmos. Sci., 38, 25142531.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and R. A. Plumb, 1992: Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: The dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462476.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and R. Saravanan, 2000: The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci., 57, 36633685.

    • Search Google Scholar
    • Export Citation
  • Rong, P.-P., , and D. W. Waugh, 2004: Vacillations in a shallow-water model of the stratosphere. J. Atmos. Sci., 61, 11741185.

  • Saffman, P. G., 1992: Vortex Dynamics. Cambridge University Press, 311 pp.

  • Scott, R. K., , and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 27582776.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1989: An investigation of resonant waves in a numerical model of an observed sudden stratospheric warming. J. Atmos. Sci., 47, 30383054.

    • Search Google Scholar
    • Export Citation
  • Su, C. H., 1979: Motion of fluid with constant vorticity in a singly-connected region. Phys. Fluids, 22, 2032, doi:10.1063/1.862502.

  • Swanson, K. L., 2000: Stationary wave accumulation and the generation of low-frequency variability on zonally varying flows. J. Atmos. Sci., 57, 22622280.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., , and R. S. Lindzen, 1979a: A theory of stationary long waves. Part I: A simple theory of blocking. Mon. Wea. Rev., 107, 714734.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., , and R. S. Lindzen, 1979b: A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears. Mon. Wea. Rev., 107, 735750.

    • Search Google Scholar
    • Export Citation
  • Watson, G. N., 1944: A Treatise on the Theory of Bessel Functions. 2nd ed. Cambridge University Press, 804 pp.

  • Waugh, D. W., 1997: Elliptical diagnostics of stratospheric polar vortices. Quart. J. Roy. Meteor. Soc., 123, 17251748.

  • Waugh, D. W., , and D. G. Dritschel, 1999: The dependence of Rossby wave breaking on the vertical structure of the polar vortex. J. Atmos. Sci., 56, 23592375.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1987: Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 17231733.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 89 19
PDF Downloads 73 73 18

Stratospheric Sudden Warmings as Self-Tuning Resonances. Part I: Vortex Splitting Events

View More View Less
  • 1 Department of Mathematics, University College London, London, United Kingdom
© Get Permissions
Restricted access

Abstract

The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the model vortex to split, and to express the splitting condition as a function of the model parameters determining the topography and circulation.

For a specified topographic forcing profile the model behavior is governed by two nondimensional parameters: the topographic forcing height M and a surf-zone potential vorticity parameter Ω. For relatively low M, vortex splits similar to observed SSWs occur only for a narrow range of Ω values. Further, a bifurcation in parameter space is observed: a small change in Ω (or M) beyond a critical value can lead to an abrupt transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results add an important new aspect to the “resonant excitation” theory of SSWs. Under this paradigm, it is not necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for upward wave propagation, in order to explain the occurrence of SSWs.

Corresponding author address: N. Joss Matthewman, Department of Mathematics, University College London, 25 Gower Street, London WC1E 6BT, United Kingdom. E-mail: jmatt@uci.edu

Abstract

The fundamental dynamics of “vortex splitting” stratospheric sudden warmings (SSWs), which are known to be predominantly barotropic in nature, are reexamined using an idealized single-layer f-plane model of the polar vortex. The aim is to elucidate the conditions under which a stationary topographic forcing causes the model vortex to split, and to express the splitting condition as a function of the model parameters determining the topography and circulation.

For a specified topographic forcing profile the model behavior is governed by two nondimensional parameters: the topographic forcing height M and a surf-zone potential vorticity parameter Ω. For relatively low M, vortex splits similar to observed SSWs occur only for a narrow range of Ω values. Further, a bifurcation in parameter space is observed: a small change in Ω (or M) beyond a critical value can lead to an abrupt transition between a state with low-amplitude vortex Rossby waves and a sudden vortex split. The model behavior can be fully understood using two nonlinear analytical reductions: the Kida model of elliptical vortex motion in a uniform strain flow and a forced nonlinear oscillator equation. The abrupt transition in behavior is a feature of both reductions and corresponds to the onset of a nonlinear (self-tuning) resonance. The results add an important new aspect to the “resonant excitation” theory of SSWs. Under this paradigm, it is not necessary to invoke an anomalous tropospheric planetary wave source, or unusually favorable conditions for upward wave propagation, in order to explain the occurrence of SSWs.

Corresponding author address: N. Joss Matthewman, Department of Mathematics, University College London, 25 Gower Street, London WC1E 6BT, United Kingdom. E-mail: jmatt@uci.edu
Save