• Barsugli, J., , and D. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10, 20872106.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and K. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci., 58, 31583183.

    • Search Google Scholar
    • Export Citation
  • Branscome, L. E., , W. J. Gutowski, , and D. Stewart, 1989: Effect of surface fluxes on the nonlinear development of baroclinic waves. J. Atmos. Sci., 46, 460475.

    • Search Google Scholar
    • Export Citation
  • Card, P. A., , and A. Barcilon, 1982: The Charney stability problem with a lower Ekman layer. J. Atmos. Sci., 39, 21282137.

  • Cayan, D., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881.

    • Search Google Scholar
    • Export Citation
  • Cehelsky, P., , and K. Tung, 1991: Nonlinear baroclinic adjustment. J. Atmos. Sci., 48, 19301947.

  • Chen, G., , I. Held, , and W. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915.

    • Search Google Scholar
    • Export Citation
  • da Silva, A., , C. Young, , and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., , and R. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 14811495.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and R. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., , C. Frankignoul, , and J. Marshall, 2001: Coupled ocean–atmosphere dynamics in a simple midlatitude climate model. J. Climate, 14, 37043723.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and E. Kestenare, 2002: The surface heat flux feedback. Part I: Estimates from observations in the Atlantic and the North Pacific. Climate Dyn., 19, 633647.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , E. Kestenare, , M. Botzet, , A. Carril, , H. Drange, , A. Pardaens, , L. Terray, , and R. Sutton, 2004: An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis. Climate Dyn., 22, 373388.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., 1985: Baroclinic adjustment and the midlatitude temperature profiles. J. Atmos. Sci., 42, 17351745.

  • Gutowski, W. J., , L. E. Branscome, , and D. Stewart, 1989: Mean flow adjustment during life cycles of baroclinic waves. J. Atmos. Sci., 46, 17241737.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , I. Fung, , A. Lacis, , D. Rind, , S. Lebedeff, , R. Ruedy, , G. Russell, , and P. Stone, 1988: Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res., 93 (D8), 93419364.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., 1994: Global Physical Climatology. Academic Press, 411 pp.

  • Hsiung, J., 1986: Mean surface energy fluxes over the global ocean. J. Geophys. Res., 91, 10 58510 606.

  • James, I. N., 1987: Suppression of baroclinic instability in horizontally sheared flows. J. Atmos. Sci., 44, 37103720.

  • James, I. N., , and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112, 12311250.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10, 18211835.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., , P. Berrisford, , B. Hoskins, , A. Simmons, , S. Uppala, , S. Lamy-Thépaut, , and R. Hine, 2005: ERA-40 Atlas. ERA-40 Project Rep. Series 19, 191 pp. [Available online at http://www.ecmwf.int/research/era/ERA-40_Atlas/docs/index.html.]

    • Search Google Scholar
    • Export Citation
  • Kirk-Davidoff, D., , and R. Lindzen, 2000: An energy balance model based on potential vorticity homogenization. J. Climate, 13, 431448.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , and I. Held, 1996: Equilibrium atmospheric response to North Atlantic SST anomalies. J. Climate, 9, 12081220.

  • Lee, D., , Z. Liu, , and Y. Liu, 2008: Beyond thermal interaction between ocean and atmosphere: On the extratropical climate variability due to the wind-induced SST. J. Climate, 21, 20012018.

    • Search Google Scholar
    • Export Citation
  • Lin, S., , and R. Pierrehumbert, 1988: Does Ekman friction suppress baroclinic instability? J. Atmos. Sci., 45, 29202933.

  • Lindzen, R. S., 1993: Baroclinic neutrality and the tropopause. J. Atmos. Sci., 50, 11481151.

  • Morcrette, J., 1991: Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J. Geophys. Res., 96 (D5), 91219132.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., , and W. Weng, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as a sea surface temperature dependent stochastic process. J. Climate, 12, 697721.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Peng, S., , L. Mysak, , H. Ritchie, , J. Derome, , and B. Dugas, 1995: The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic. J. Climate, 8, 137157.

    • Search Google Scholar
    • Export Citation
  • Russell, G., , J. Miller, , and L.-C. Tsang, 1985: Seasonal oceanic heat transports computed from an atmospheric model. Dyn. Atmos. Oceans, 9, 253271.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., , A. Miller, , and D. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586605.

  • Seager, R., , Y. Kushnir, , N. Naik, , M. Cane, , and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 42494265.

    • Search Google Scholar
    • Export Citation
  • Solomon, A. B., , and P. H. Stone, 2001a: Equilibration in an eddy resolving model with simplified physics. J. Atmos. Sci., 58, 561574.

    • Search Google Scholar
    • Export Citation
  • Solomon, A. B., , and P. H. Stone, 2001b: The sensitivity of an intermediate model of the midlatitude troposphere’s equilibrium to changes in radiative forcing. J. Atmos. Sci., 58, 23952410.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571.

  • Stone, P. H., , and B. Nemet, 1996: Baroclinic adjustment: A comparison between theory, observations, and models. J. Atmos. Sci., 53, 16631674.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Swanson, K., , and R. T. Pierrehumbert, 1997: Lower-tropospheric heat transport in the Pacific storm track. J. Atmos. Sci., 54, 15331543.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., , and J. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Trenberth, K., , and D. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705.

    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., , and B. Hoskins, 1988: Baroclinic instability of the zonally averaged flow with boundary layer damping. J. Atmos. Sci., 45, 15841593.

    • Search Google Scholar
    • Export Citation
  • Welch, W., , and K. Tung, 1998: Nonlinear baroclinic adjustment and wavenumber selection in a simple case. J. Atmos. Sci., 55, 12851302.

    • Search Google Scholar
    • Export Citation
  • Yu, B., , G. Boer, , F. Zwiers, , and W. Merryfield, 2009: Covariability of SST and surface heat fluxes in reanalyses and CMIP3 climate models. Climate Dyn., 36, 589605.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., 2009: Nonlinear equilibration of baroclinic eddies: The role of boundary layer processes and seasonal forcing. Ph.D. thesis, Massachusetts Institute of Technology, 266 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and P. Stone, 2010: Baroclinic eddy equilibration under specified seasonal forcing. J. Atmos. Sci., 67, 26322648.

  • Zhang, Y., , P. Stone, , and A. Solomon, 2009: The role of boundary layer processes in limiting PV homogenization. J. Atmos. Sci., 66, 16121632.

    • Search Google Scholar
    • Export Citation
  • Zurita, P., , and R. Lindzen, 2001: The equilibration of short Charney waves: Implications for potential vorticity homogenization in the extratropical troposphere. J. Atmos. Sci., 58, 34433462.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , and R. Lindzen, 2004a: Baroclinic equilibration and the maintenance of the momentum balance. Part I: A barotropic analog. J. Atmos. Sci., 61, 14691482.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , and R. Lindzen, 2004b: Baroclinic equilibration and the maintenance of the momentum balance. Part II: 3D results. J. Atmos. Sci., 61, 14831499.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 5
PDF Downloads 19 19 3

Baroclinic Adjustment in an Atmosphere–Ocean Thermally Coupled Model: The Role of the Boundary Layer Processes

View More View Less
  • 1 School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • | 2 EAPS, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Baroclinic eddy equilibration and the roles of different boundary layer processes in limiting the baroclinic adjustment are studied using an atmosphere–ocean thermally coupled model. Boundary layer processes not only affect the dynamical constraint of the midlatitude baroclinic eddy equilibration but also are important components in the underlying surface energy budget. The authors' study shows that baroclinic eddies, with the strong mixing of the surface air temperature, compete against the fast boundary layer thermal damping and enhance the meridional variation of surface sensible heat flux, acting to reduce the meridional gradient of the surface temperature. Nevertheless, the requirement of the surface energy balance indicates that strong surface baroclinicity is always maintained in response to the meridionally varying solar radiation. With the strong surface baroclinicity and the boundary layer processes, the homogenized potential vorticity (PV) suggested in the baroclinic adjustment are never observed near the surface or in the boundary layer.

Although different boundary layer processes affect baroclinic eddy equilibration differently with more dynamical feedbacks and time scales included in the coupled system, their influence in limiting the PV homogenization is more uniform compared with the previous uncoupled runs. The boundary layer PV structure is more determined by the strength of the boundary layer damping than the surface baroclinicity. Stronger boundary layer processes always prevent the lower-level PV homogenization more efficiently. Above the boundary layer, a relatively robust PV structure with homogenized PV around 600–800 hPa is obtained in all of the simulations. The detailed mechanisms through which different boundary layer processes affect the equilibration of the coupled system are discussed in this study.

Corresponding author address: Yang Zhang, 22 Hankou Road, Nanjing, Jiangsu 210093, China. E-mail: yangzh@alum.mit.edu

Abstract

Baroclinic eddy equilibration and the roles of different boundary layer processes in limiting the baroclinic adjustment are studied using an atmosphere–ocean thermally coupled model. Boundary layer processes not only affect the dynamical constraint of the midlatitude baroclinic eddy equilibration but also are important components in the underlying surface energy budget. The authors' study shows that baroclinic eddies, with the strong mixing of the surface air temperature, compete against the fast boundary layer thermal damping and enhance the meridional variation of surface sensible heat flux, acting to reduce the meridional gradient of the surface temperature. Nevertheless, the requirement of the surface energy balance indicates that strong surface baroclinicity is always maintained in response to the meridionally varying solar radiation. With the strong surface baroclinicity and the boundary layer processes, the homogenized potential vorticity (PV) suggested in the baroclinic adjustment are never observed near the surface or in the boundary layer.

Although different boundary layer processes affect baroclinic eddy equilibration differently with more dynamical feedbacks and time scales included in the coupled system, their influence in limiting the PV homogenization is more uniform compared with the previous uncoupled runs. The boundary layer PV structure is more determined by the strength of the boundary layer damping than the surface baroclinicity. Stronger boundary layer processes always prevent the lower-level PV homogenization more efficiently. Above the boundary layer, a relatively robust PV structure with homogenized PV around 600–800 hPa is obtained in all of the simulations. The detailed mechanisms through which different boundary layer processes affect the equilibration of the coupled system are discussed in this study.

Corresponding author address: Yang Zhang, 22 Hankou Road, Nanjing, Jiangsu 210093, China. E-mail: yangzh@alum.mit.edu
Save