A Numerical Sensitivity Study on the Impact of Soil Moisture on Convection-Related Parameters and Convective Precipitation over Complex Terrain

Christian Barthlott Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Christian Barthlott in
Current site
Google Scholar
PubMed
Close
and
Norbert Kalthoff Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Norbert Kalthoff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of soil moisture on convection-related parameters and convective precipitation over complex terrain is studied by numerical experiments using the nonhydrostatic Consortium for Small-Scale Modeling (COSMO) model. For 1 day of the Convective and Orographically Induced Precipitation Study (COPS) conducted during summer 2007 in southwestern Germany and eastern France, initial soil moisture is varied from −50% to +50% of the reference run in steps of 5%. As synoptic-scale forcing is weak on the day under investigation, the triggering of convection is mainly due to soil–atmosphere interactions and boundary layer processes. Whereas a systematic relationship to soil moisture exists for a number of variables (e.g., latent and sensible fluxes at the ground, near-surface temperature, and humidity), a systematic increase of 24-h accumulated precipitation with increasing initial soil moisture is only present in the simulations that are drier than the reference run. The time evolution of convective precipitation can be divided into two regimes with different conditions to initiate and foster convection. Furthermore, the impact of soil moisture is different for the initiation and modification of convective precipitation. The results demonstrate the high sensitivity of numerical weather prediction to initial soil moisture fields.

Corresponding author address: Christian Barthlott, Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany. E-mail: christian.barthlott@kit.edu

Abstract

The impact of soil moisture on convection-related parameters and convective precipitation over complex terrain is studied by numerical experiments using the nonhydrostatic Consortium for Small-Scale Modeling (COSMO) model. For 1 day of the Convective and Orographically Induced Precipitation Study (COPS) conducted during summer 2007 in southwestern Germany and eastern France, initial soil moisture is varied from −50% to +50% of the reference run in steps of 5%. As synoptic-scale forcing is weak on the day under investigation, the triggering of convection is mainly due to soil–atmosphere interactions and boundary layer processes. Whereas a systematic relationship to soil moisture exists for a number of variables (e.g., latent and sensible fluxes at the ground, near-surface temperature, and humidity), a systematic increase of 24-h accumulated precipitation with increasing initial soil moisture is only present in the simulations that are drier than the reference run. The time evolution of convective precipitation can be divided into two regimes with different conditions to initiate and foster convection. Furthermore, the impact of soil moisture is different for the initiation and modification of convective precipitation. The results demonstrate the high sensitivity of numerical weather prediction to initial soil moisture fields.

Corresponding author address: Christian Barthlott, Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany. E-mail: christian.barthlott@kit.edu
Save
  • Adler, B., N. Kalthoff, and L. Gantner, 2011: Initiation of deep convection caused by land-surface inhomogeneities in West Africa: A modelled case study. Meteor. Atmos. Phys., 112, 1527, doi:10.1007/s00703-011-0131-2.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., J. W. Schipper, N. Kalthoff, B. Adler, C. Kottmeier, A. Blyth, and S. Mobbs, 2010: Model representation of boundary-layer convergence triggering deep convection over complex terrain: A case study from COPS. Atmos. Res., 95, 172185, doi:10.1016/j.atmosres.2009.09.010.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., C. Hauck, G. Schädler, N. Kalthoff, and C. Kottmeier, 2011a: Soil moisture impacts on convective indices and precipitation over complex terrain. Meteor. Z., 20, 185197, doi:10.1127/0941-2948/2011/0216.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and Coauthors, 2011b: Initiation of deep convection at marginal instability in an ensemble of mesoscale models: A case-study from COPS. Quart. J. Roy. Meteor. Soc., 137 (S1), 118136, doi:10.1002/qj.707.

    • Search Google Scholar
    • Export Citation
  • Bennett, L. J., and Coauthors, 2011: Initiation of convection over the Black Forest mountains during COPS IOP15a. Quart. J. Roy. Meteor. Soc., 137 (S1), 176189, doi:10.1002/qj.760.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Chaboureau, J.-P., F. Guichard, J.-L. Redelsperger, and J.-L. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33, 13231340.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a cloud-resolving simulation of the genesis of a mesoscale convective system to horizontal heterogeneities in soil moisture initialization. J. Hydrometeor., 5, 924958.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699.

  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism–1. Theory and observations. Water Resour. Res., 34, 765776.

  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and M. Segal, 2000: Sensitivity of forecast rainfall in a Texas convective system to soil moisture and convective parameterization. Wea. Forecasting, 15, 509525.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., D. J. Parker, and J. H. Marsham, 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows? J. Atmos. Sci., 68, 619634.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Search Google Scholar
    • Export Citation
  • Hagen, M., J. van Baelen, and E. Richard, 2011: Influence of the wind profile on the initiation of convection in mountainous terrain. Quart. J. Roy. Meteor. Soc., 137 (S1), 224235, doi:10.1002/qj.784.

    • Search Google Scholar
    • Export Citation
  • Hauck, C., C. Barthlott, L. Krauss, and N. Kalthoff, 2011: Soil moisture variability and its influence on convective precipitation over complex terrain. Quart. J. Roy. Meteor. Soc., 137 (S1), 4256, doi:10.1002/qj.766.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic, 535 pp.

  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138.

  • Jones, A. R., and N. A. Brunsell, 2009: A scaling analysis of soil moisture–precipitation interactions in a regional climate model. Theor. Appl. Climatol., 98, 221235, doi:10.1007/s00704-009-0109-x.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2009: The impact of convergence zones on the initiation of deep convection: A case study from COPS. Atmos. Res., 93, 680694, doi:10.1016/j.atmosres.2009.02.010.

    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2011: The dependence of convection-related parameters on surface and boundary-layer conditions over complex terrain. Quart. J. Roy. Meteor. Soc., 137 (S1), 7080, doi:10.1002/qj.686.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361378.

  • Kohler, M., N. Kalthoff, and C. Kottmeier, 2010: The impact of soil moisture modifications on CBL characteristics in West Africa: A case-study from the AMMA campaign. Quart. J. Roy. Meteor. Soc., 136 (S1), 442455, doi:10.1002/qj.430.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Kottmeier, C., and Coauthors, 2008: Mechanisms initiating deep convection over complex terrain during COPS. Meteor. Z., 17, 931948, doi:10.1127/0941-2948/2008/0348.

    • Search Google Scholar
    • Export Citation
  • Krauss, L., C. Hauck, and C. Kottmeier, 2010: Spatio-temporal soil moisture variability in southwest Germany observed with a new monitoring network within the COPS domain. Meteor. Z., 19, 523537, doi:10.1127/0941-2948/2010/0486.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., H. Laurent, and A. A. Lima, 2002: Diurnal march of the convection observed during TRMM-WETAMC/LBA. J. Geophys. Res., 107, 8064, doi:10.1029/2001JD000338.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037.

  • Martin, W. J., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev., 134, 192207.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., E. Takle, M. Segal, and R. Turner, 1996: Influences of model parameterization schemes on the response of rainfall to soil moisture in the central United States. Mon. Wea. Rev., 124, 17861802.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 2002: The response of CAPE and CIN to tropospheric thermal variations. Quart. J. Roy. Meteor. Soc., 128, 119130, doi:10.1256/00359000260498815.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and M. H. Wilkening, 1982: Flow and mixing in New Mexico mountain cumuli. J. Atmos. Sci., 39, 22112228.

  • Schädler, G., 1990: Triggering of atmospheric circulations by moisture inhomogeneities of the earth’s surface. Bound.-Layer Meteor., 51, 129.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Schättler, U., G. Doms, and C. Schraff, 2009: A description of the nonhydrostatic regional COSMO model. Part VII: User’s Guide. [Available online at http://www.cosmo-model.org/content/model/documentation/core/default.htm.]

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., D. J. Parker, and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • van Weverberg, K., N. P. M. van Lipzig, L. Delobbe, and D. Lauwaet, 2010: Sensitivity of quantitative precipitation forecast to soil moisture initialization and microphysics parametrization. Quart. J. Roy. Meteor. Soc., 136, 978996, doi:10.1002/qj.611.

    • Search Google Scholar
    • Export Citation
  • Western, A. W., R. B. Grayson, and G. Blöschl, 2002: Scaling of soil moisture: A hydrologic perspective. Annu. Rev. Earth Planet. Sci., 30, 149180.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136.

  • Wilson, J., and W. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically Induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2011: The Convective and Orographically Induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Quart. J. Roy. Meteor. Soc., 137 (S1), 330, doi:10.1002/qj.752.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., L. Zhang, D. Hansford, A. Radzan, N. Selover, and C. M. Brown, 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134, 25272546.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., J. Hu, and A. Radzan, 2009: Evolution of the vertical thermodynamic profile during the transition from shallow to deep convection during CuPIDO 2006. Mon. Wea. Rev., 137, 937953.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 631 220 8
PDF Downloads 450 139 3