Clouds Associated with the Madden–Julian Oscillation: A New Perspective from CloudSat

Emily M. Riley Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Emily M. Riley in
Current site
Google Scholar
PubMed
Close
,
Brian E. Mapes Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Brian E. Mapes in
Current site
Google Scholar
PubMed
Close
, and
Stefan N. Tulich CIRES, University of Colorado, Boulder, Colorado

Search for other papers by Stefan N. Tulich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution of total cloud cover and cloud types is composited across the Madden–Julian oscillation (MJO) using CloudSat data for June 2006–May 2010. Two approaches are used to define MJO phases: 1) the local phase is determined at each longitude and time from filtered outgoing longwave radiation, and 2) the global phase is defined using a popular real-time multivariate MJO (RMM) index, which assigns the tropics to an MJO phase each day.

In terms of local phase, CloudSat results show a familiar evolution of cloud type predominance: in the growing stages shallow clouds coexist with deep, intense, but narrow convective systems. Widespread cloud coverage and rainfall appear during the active phases, becoming more anvil dominated with time, and finally suppressed conditions return. Results are compared to the convectively coupled Kelvin wave, which has a similar life cycle to the MJO. Convection in the MJO tends to be modulated more by moisture variations compared to the Kelvin wave.

In terms of global phases, wide deep precipitating, anvil, cumulus congestus, and altocumulus types exhibit similar eastward propagation from the Indian Ocean to the central Pacific, while the narrow deep precipitating type only propagates to the Maritime Continent. These propagating types also show coherent Western Hemisphere signals. Generally, negative Western Hemisphere anomalies occur when anomalies are positive over the Indian Ocean.

In both approaches, sampling leads to pictorial renderings of actual clouds across MJO phases. These mosaics provide an objective representation of the cloud field that was unavailable before CloudSat and serve as a reminder to the complex nature of the MJO’s multiscale features.

Corresponding author address: Emily M. Riley, Department of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: eriley@rsmas.miami.edu

Abstract

The evolution of total cloud cover and cloud types is composited across the Madden–Julian oscillation (MJO) using CloudSat data for June 2006–May 2010. Two approaches are used to define MJO phases: 1) the local phase is determined at each longitude and time from filtered outgoing longwave radiation, and 2) the global phase is defined using a popular real-time multivariate MJO (RMM) index, which assigns the tropics to an MJO phase each day.

In terms of local phase, CloudSat results show a familiar evolution of cloud type predominance: in the growing stages shallow clouds coexist with deep, intense, but narrow convective systems. Widespread cloud coverage and rainfall appear during the active phases, becoming more anvil dominated with time, and finally suppressed conditions return. Results are compared to the convectively coupled Kelvin wave, which has a similar life cycle to the MJO. Convection in the MJO tends to be modulated more by moisture variations compared to the Kelvin wave.

In terms of global phases, wide deep precipitating, anvil, cumulus congestus, and altocumulus types exhibit similar eastward propagation from the Indian Ocean to the central Pacific, while the narrow deep precipitating type only propagates to the Maritime Continent. These propagating types also show coherent Western Hemisphere signals. Generally, negative Western Hemisphere anomalies occur when anomalies are positive over the Indian Ocean.

In both approaches, sampling leads to pictorial renderings of actual clouds across MJO phases. These mosaics provide an objective representation of the cloud field that was unavailable before CloudSat and serve as a reminder to the complex nature of the MJO’s multiscale features.

Corresponding author address: Emily M. Riley, Department of Meteorology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: eriley@rsmas.miami.edu
Save
  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, doi:10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bantzer, C. H., and J. M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50-day oscillation. J. Atmos. Sci., 53, 30323045.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60, 847864.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. Waliser, J. Li, and C. Woods, 2011: Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-Interim reanalysis. Climate Dyn., 36, 22192232, doi:10.1007/s00382-010-0853-8.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Khairoutdinov, M., C. DeMott, and D. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU Multiscale Modeling Framework. J. Climate, 21, 413431.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611984.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60-day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and P. H. Chan, 1985: Aspects of the 40–50-day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113, 18891909.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and H.-T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. Mapes, M. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715.

    • Search Google Scholar
    • Export Citation
  • Luo, Z. J., G. Y. Liu, and G. L. Stephens, 2010: Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophys. Res. Lett., 37, L09804, doi:10.1029/2010GL042904.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2004: Level 2 GEOPROF product process description and interface control document. Cooperative Institute for Research in the Atmosphere, 43 pp. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/2B-GEOPROF/2B-GEOPROF_PDICD_3.0.pdf.]

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Marchand, R. T., G. Mace, T. Ackerman, and G. L. Stephens, 2008: Hydrometeor detection using CloudSat—An earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Schumacher, 2011: Modulation of Caribbean precipitation by the Madden–Julian oscillation. J. Climate, 24, 813824.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., M. Satoh, and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42, 107126, doi:10.1016/j.dynatmoce.2006.02.002.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1995: Intraseasonal oscillations during the TOGA-COARE IOP. J. Meteor. Soc. Japan, 73, 305319.

  • Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 29582977.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627640, doi:10.1111/j.1600-0870.2007.00268.x.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Z. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046.

  • Riley, E. M., 2009: A global survey of clouds by CloudSat. M.S. thesis, Division of Meteorology and Physical Oceanography, University of Miami, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., and B. E. Mapes, 2009: Unexpected peak near −15°C in CloudSat echo top climatology. Geophys. Res. Lett., 36, L09819, doi:10.1029/2009GL037558.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1 year of results. Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., D. E. Waliser, B. Tian, D. L. Wu, J. H. Jiang, and W. G. Read, 2008: Characterization of MJO-related upper tropospheric hydrological processes using MLS. Geophys. Res. Lett., 35, L08812, doi:10.1029/2008GL033675.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat Mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, E. J. Fetzer, B. H. Lambrigtsen, Y. L. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial-temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tromeur, E., and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the MJO. J. Climate, 23, 18371853.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2010: Transient environmental sensitivities of explicitly simulated tropical convection. J. Atmos. Sci., 67, 923940.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2010: Annual, interannual, and intraseasonal variability of tropical tropopause transition layer cirrus. J. Atmos. Sci., 67, 30973112.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability of the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Praxis, 307–360.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2007: Level 2 cloud scenario classification product process description and interface control document. Cooperative Institute for Research in the Atmosphere, 50 pp. [Available online http://www.cloudsat.cira.colostate.edu/ICD/2B-CLDCLASS/2B-CLDCLASS_PDICD_5.0.pdf.]

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, C., and H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448.

  • Yasunaga, K., and B. E. Mapes, 2011: Differences between more divergent versus more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zipser, E. J., R. J. Meitín, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1090 275 60
PDF Downloads 1015 151 6