Rossby Wave Scales, Propagation, and the Variability of Eddy-Driven Jets

Elizabeth A. Barnes Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Elizabeth A. Barnes in
Current site
Google Scholar
PubMed
Close
and
Dennis L. Hartmann Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The eddy-driven jet is located in the midlatitudes, bounded on one side by the pole and often bounded on the opposite side by a strong Hadley-driven jet. This work explores how the eddy-driven jet and its variability persist within these limits. It is demonstrated in a barotropic model that as the jet is located at higher latitudes, the eddy length scale increases as predicted by spherical Rossby wave theory, and the leading mode of variability of the jet changes from a meridional shift to a pulse. Looking equatorward, a similar change in eddy-driven jet variability is observed when it is moved equatorward toward a constant subtropical jet. In both the poleward and equatorward limits, the change in variability from a shift to a pulse is due to the modulation of eddy propagation and momentum flux. Near the pole, the small value of beta (the meridional gradient of absolute vorticity) and subsequent lack of wave breaking near the pole account for the change in variability, whereas on the equatorward side of the jet the strong subtropical winds can affect eddy propagation and restrict the movement of the eddy-driven jet or cause bimodal behavior of the jet latitude. Barotropic quasilinear theory thus suggests that the leading mode of zonal-wind variability will transition from a shift to a pulse as the eddy-driven jets move poleward with climate change, and that the eddy length scale will increase as the jet moves poleward.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: eabarnes@atmos.washington.edu

Abstract

The eddy-driven jet is located in the midlatitudes, bounded on one side by the pole and often bounded on the opposite side by a strong Hadley-driven jet. This work explores how the eddy-driven jet and its variability persist within these limits. It is demonstrated in a barotropic model that as the jet is located at higher latitudes, the eddy length scale increases as predicted by spherical Rossby wave theory, and the leading mode of variability of the jet changes from a meridional shift to a pulse. Looking equatorward, a similar change in eddy-driven jet variability is observed when it is moved equatorward toward a constant subtropical jet. In both the poleward and equatorward limits, the change in variability from a shift to a pulse is due to the modulation of eddy propagation and momentum flux. Near the pole, the small value of beta (the meridional gradient of absolute vorticity) and subsequent lack of wave breaking near the pole account for the change in variability, whereas on the equatorward side of the jet the strong subtropical winds can affect eddy propagation and restrict the movement of the eddy-driven jet or cause bimodal behavior of the jet latitude. Barotropic quasilinear theory thus suggests that the leading mode of zonal-wind variability will transition from a shift to a pulse as the eddy-driven jets move poleward with climate change, and that the eddy length scale will increase as the jet moves poleward.

Corresponding author address: Elizabeth A. Barnes, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: eabarnes@atmos.washington.edu
Save
  • Barnes, E. A., and D. L. Hartmann, 2010: Testing a theory for the effect of latitude on the persistence of eddy-driven jets using the CMIP3 simulations. Geophys. Res. Lett., 37, L15801, doi:10.1029/2010GL044144.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., D. L. Hartmann, D. M. W. Frierson, and J. Kidston, 2010: Effect of latitude on the persistence of eddy-driven jets. Geophys. Res. Lett., 37, L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 5149–5163.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111–125.

  • Kidston, J., and E. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in the 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., S. M. Dean, J. A. Renwick, and G. K. Vallis, 2010: A robust increase in the eddy length scale in the simulation of future climates. Geophys. Res. Lett., 37, doi:10.1029/2009GL041615.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 1490–1503.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 3312–3327.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 1828–1844.

    • Search Google Scholar
    • Export Citation
  • Smith, K., G. Boccaletti, C. Henning, I. Marinov, C. Tam, I. Held, and G. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid. Mech., 469, 13–48.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264–280.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Hannachi, and B. Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856–868, doi:10.1002/qj.625.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1419 397 22
PDF Downloads 1218 317 18