Nonlinear Dynamics and Regional Variations in the MJO Skeleton

Andrew J. Majda Department of Mathematics, and Center for Atmosphere–Ocean Science, Courant Institute, New York University, New York, New York

Search for other papers by Andrew J. Majda in
Current site
Google Scholar
PubMed
Close
and
Samuel N. Stechmann Department of Mathematics, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Samuel N. Stechmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A minimal, nonlinear oscillator model is analyzed for the Madden–Julian oscillation (MJO) “skeleton” (i.e., its fundamental features on intraseasonal/planetary scales), which includes the following: (i) a slow eastward phase speed of roughly 5 m s−1, (ii) a peculiar dispersion relation with /dk ≈ 0, and (iii) a horizontal quadrupole vortex structure. Originally proposed in recent work by the authors, the fundamental mechanism involves neutrally stable interactions between (i) planetary-scale, lower-tropospheric moisture anomalies and (ii) the envelope of subplanetary-scale, convection/wave activity. Here, the model’s nonlinear dynamics are analyzed in a series of numerical experiments, using either a uniform sea surface temperature (SST) or a warm-pool SST. With a uniform SST, the results show significant variations in the number, strength, and/or locations of MJO events, including, for example, cases of a strong MJO event followed by a weaker MJO event, similar to the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). With a warm-pool SST, MJO events often begin as standing oscillations and then propagate slowly eastward across the warm pool, a behavior imitating MJOs in nature. While displaying the fundamental features of the MJO skeleton, these MJO events had significant variations in their lifetimes and regional extents, and they displayed intense, irregular fluctuations in their amplitudes. The model reproduces all of these features of the MJO skeleton without including mechanisms for the MJO’s “muscle,” such as refined vertical structure and upscale convective momentum transport from subplanetary-scale convection/waves. Besides these numerical experiments, it is also shown that the nonlinear model conserves a total energy that includes a contribution from the convective activity.

Corresponding author address: Samuel N. Stechmann, Department of Mathematics, University of Wisconsin—Madison, 480 Lincoln Dr., Madison, WI 53706. E-mail: stechmann@wisc.edu

Abstract

A minimal, nonlinear oscillator model is analyzed for the Madden–Julian oscillation (MJO) “skeleton” (i.e., its fundamental features on intraseasonal/planetary scales), which includes the following: (i) a slow eastward phase speed of roughly 5 m s−1, (ii) a peculiar dispersion relation with /dk ≈ 0, and (iii) a horizontal quadrupole vortex structure. Originally proposed in recent work by the authors, the fundamental mechanism involves neutrally stable interactions between (i) planetary-scale, lower-tropospheric moisture anomalies and (ii) the envelope of subplanetary-scale, convection/wave activity. Here, the model’s nonlinear dynamics are analyzed in a series of numerical experiments, using either a uniform sea surface temperature (SST) or a warm-pool SST. With a uniform SST, the results show significant variations in the number, strength, and/or locations of MJO events, including, for example, cases of a strong MJO event followed by a weaker MJO event, similar to the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). With a warm-pool SST, MJO events often begin as standing oscillations and then propagate slowly eastward across the warm pool, a behavior imitating MJOs in nature. While displaying the fundamental features of the MJO skeleton, these MJO events had significant variations in their lifetimes and regional extents, and they displayed intense, irregular fluctuations in their amplitudes. The model reproduces all of these features of the MJO skeleton without including mechanisms for the MJO’s “muscle,” such as refined vertical structure and upscale convective momentum transport from subplanetary-scale convection/waves. Besides these numerical experiments, it is also shown that the nonlinear model conserves a total energy that includes a contribution from the convective activity.

Corresponding author address: Samuel N. Stechmann, Department of Mathematics, University of Wisconsin—Madison, 480 Lincoln Dr., Madison, WI 53706. E-mail: stechmann@wisc.edu
Save
  • Austin, J. M., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5, 103107.

  • Benedict, J., and D. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721.

  • Biello, J. A., and A. J. Majda, 2006: Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn. Atmos. Oceans, 42, 152215.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., A. J. Majda, and M. W. Moncrieff, 2007: Meridional momentum flux and superrotation in the multi-scale IPESD MJO model. J. Atmos. Sci., 64, 16361651.

    • Search Google Scholar
    • Export Citation
  • Bourlioux, A., and A. J. Majda, 1995: Theoretical and numerical structure of unstable detonations. Philos. Trans. Roy. Soc. London, 350A, 2968.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1987: On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44, 19401949.

  • Derbyshire, S., I. Beau, P. Bechtold, J. Grandpeix, J. Piriou, J. Redelsperger, and P. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating 2–15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100 (D12), 25 78125 790.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44, 23242340.

  • Frierson, D. M. W., A. J. Majda, and O. M. Pauluis, 2004: Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sci., 2 (4), 591626.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847864.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture–convection feedback in the Tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99, 80738084.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008a: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008b: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., A. St-Cyr, A. J. Majda, and J. Tribbia, 2011: The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68, 240264.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Lau, K. M., and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113, 18891909.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, Eds., 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, 436 pp.

  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Majda, A. J., 2003: Introduction to PDEs and Waves for the Atmosphere and Ocean. Vol. 9, Courant Lecture Notes in Mathematics, American Mathematical Society, x + 234 pp.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the Tropics. J. Atmos. Sci., 60, 393408.

  • Majda, A. J., and J. A. Biello, 2004: A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA, 101, 47364741.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009a: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009b: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., S. N. Stechmann, and B. Khouider, 2007: Madden–Julian Oscillation analog and intraseasonal variability in a multicloud model above the equator. Proc. Natl. Acad. Sci. USA, 104, 99199924.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237.

  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., T. L’Ecuyer, and C. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805827.

    • Search Google Scholar
    • Export Citation
  • Myers, D., and D. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819.

  • Roundy, P., and W. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Salby, M., and H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224.

    • Search Google Scholar
    • Export Citation
  • Salby, M., R. R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 23442367.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2 (2), doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. Waliser, E. Fetzer, B. Lambrigtsen, Y. Yung, and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545.

    • Search Google Scholar
    • Export Citation
  • Tung, W., and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871.

    • Search Google Scholar
    • Export Citation
  • Tung, W., and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397413.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W.-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57, 23742396.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741752.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 186 10
PDF Downloads 336 93 5