Air and Surface Temperature Coupling in the Convective Atmospheric Boundary Layer

Anirban Garai Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Anirban Garai in
Current site
Google Scholar
PubMed
Close
and
Jan Kleissl Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Jan Kleissl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a convective boundary layer, coherent structures were detected through their thermal signature on an artificial turf surface using high-frequency thermal infrared (TIR) imagery and surface layer turbulence measurements. The coherent structures cause surface temperature variations over tens of seconds and spatial scales of tens to a few hundred meters. Evidence of processes similar to those in a renewal event was observed. Spatial and temporal correlation analysis revealed the geometric and velocity information of the structures at the ground footprint of air temperature measurements. The velocity of the coherent structures was consistent with the wind speed at 6.5 m AGL. Practical implications of turbulence-driven surface temperature variability for thermal remote sensing are also discussed.

Corresponding author address: Jan Kleissl, Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, EBUII–580, La Jolla, CA 92093-0411. E-mail: jkleissl@ucsd.edu

Abstract

In a convective boundary layer, coherent structures were detected through their thermal signature on an artificial turf surface using high-frequency thermal infrared (TIR) imagery and surface layer turbulence measurements. The coherent structures cause surface temperature variations over tens of seconds and spatial scales of tens to a few hundred meters. Evidence of processes similar to those in a renewal event was observed. Spatial and temporal correlation analysis revealed the geometric and velocity information of the structures at the ground footprint of air temperature measurements. The velocity of the coherent structures was consistent with the wind speed at 6.5 m AGL. Practical implications of turbulence-driven surface temperature variability for thermal remote sensing are also discussed.

Corresponding author address: Jan Kleissl, Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, EBUII–580, La Jolla, CA 92093-0411. E-mail: jkleissl@ucsd.edu
Save
  • Balick, L. K., C. A. Jeffery, and B. Henderson, 2003: Turbulence-induced spatial variation of surface temperature in high-resolution thermal IR satellite imagery. Remote Sensing for Agriculture, Ecosystems, and Hydrology IV, M. Owe, G. D’ Urso, and L. Toulios, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4879), 221–230.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag, 1998a: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol., 212-213, 198212.

    • Search Google Scholar
    • Export Citation
  • Bastiaanssen, W. G. M., H. Pelgrum, J. Wang, Y. Ma, J. F. Moreno, G. J. Roerink, and T. van der Wal, 1998b: A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation. J. Hydrol., 212–213, 213229.

    • Search Google Scholar
    • Export Citation
  • Braaten, D. A., R. H. Shaw, and K. T. Paw U, 1993: Boundary-layer flow structures associated with particle reentrainment. Bound.-Layer Meteor., 65, 255272.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 1975: A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res., 11, 543550.

    • Search Google Scholar
    • Export Citation
  • Castellvi, F., 2004: Combining surface renewal analysis and similarity theory: A new approach for estimating sensible heat flux. Water Resour. Res., 40, W05201, doi:10.1029/2003WR002677.

    • Search Google Scholar
    • Export Citation
  • Castellvi, F., and R. L. Snyder, 2009: Combining the dissipation method and surface renewal analysis to estimate scalar fluxes from the time traces over rangeland grass near Ione (California). Hydrol. Proc., 23, 842857.

    • Search Google Scholar
    • Export Citation
  • Castellvi, F., P. J. Perez, and M. Ibañez, 2002: A method based on high-frequency temperature measurements to estimate the sensible heat flux avoiding the height dependence. Water Resour. Res., 38, 1084, doi:10.1029/2001WR000486.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105, 811827.

    • Search Google Scholar
    • Export Citation
  • Christen, A., and J. A. Voogt, 2009: Linking atmospheric turbulence and surface temperature fluctuations in a street canyon. Proc. Seventh Int. Conf. on Urban Climate, Yokohoma, Japan, International Association for Urban Climate, A3-6.

    • Search Google Scholar
    • Export Citation
  • Christen, A., and J. A. Voogt, 2010: Inferring turbulent exchange process in an urban street canyon from high-frequency thermography. Extended Abstracts, Ninth Symp. on the Urban Environment, Keystone, Colorado, Amer. Meteor. Soc., J3A.3. [Available online at http://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_173169.htm.]

    • Search Google Scholar
    • Export Citation
  • Corino, E. R., and R. S. Brodkey, 1969: A visual investigation of the wall region in turbulent flow. J. Fluid Mech., 37, 130.

  • Deardorff, J. W., and G. E. Willis, 1985: Further results from a laboratory model of the convective planetary boundary layer. Bound.-Layer Meteor., 32, 205236.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., 2010: Waving plants and turbulent eddies. J. Fluid Mech., 652, 14.

  • Foken, T., F. Wimmer, M. Mauder, C. Thomas, and C. Liebethal, 2006: Some aspects of the energy balance closure problem. Atmos. Chem. Phys., 6, 43954402.

    • Search Google Scholar
    • Export Citation
  • Gao, W., R. H. Shaw, and K. T. Paw U, 1989: Observation of organized structure in turbulent flow within and above a forest canopy. Bound.-Layer Meteor., 47, 349377.

    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1966: Convection at high Rayleigh number. Proceedings of the 11th International Congress on Applied Mechanics, H. Görtler, Ed., Springer-Verlag, 1109–1115.

    • Search Google Scholar
    • Export Citation
  • Hsieh, C.-I., G. G. Katul, and T. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765772.

    • Search Google Scholar
    • Export Citation
  • Hudgins, L., C. A. Friehe, and M. E. Mayer, 1993: Wavelet transforms and atmospheric turbulence. Phys. Rev. Lett., 71, 32793282.

  • Kaimal, J. C., and J. A. Businger, 1970: Case studies of a convective plume and a dust devil. J. Appl. Meteor., 9, 612620.

  • Kaimal, J. C., J. C. Wyngard, D. A. Haugen, O. R. Cote, and Y. Izumi, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., J. D. Albertson, C.-I. Hsieh, P. S. Conklin, J. T. Sigmon, M. B. Parlange, and K. R. Knoerr, 1996: The “inactive” eddy motion and the large-scale turbulent pressure fluctuations in the dynamic sublayer. J. Atmos. Sci., 53, 25122524.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., J. Schieldge, C.-I. Hsieh, and B. Vidakovic, 1998: Skin temperature perturbations induced by surface layer turbulence above a grass surface. Water Resour. Res., 34, 12651274.

    • Search Google Scholar
    • Export Citation
  • Kline, S. J., W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, 1967: The structure of turbulent boundary layers. J. Fluid Mech., 30, 741773.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., J. H. Prueger, and L. E. Hipps, 2002: Impact of using different time-averaged inputs for estimating sensible heat flux of riparian vegetation using radiometric surface temperature. J. Appl. Meteor., 41, 319332.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and J. A. Businger, 1975: Temperature profile in the molecular sublayer near the interface of a fluid in turbulent motion. Geophys. Res. Lett., 2, 403404.

    • Search Google Scholar
    • Export Citation
  • Paw U, K. T., Y. Brunet, S. Collineau, R. H. Shaw, T. Maitani, J. Qiu, and L. Hipps, 1992: On coherent structures in turbulence above and within agricultural plant canopies. Agric. For. Meteor., 61, 5568.

    • Search Google Scholar
    • Export Citation
  • Paw U, K. T., J. Qiu, H.-B. Su, T. Watanabe, and Y. Brunet, 1995: Surface renewal analysis: A new method to obtain scalar fluxes. Agric. For. Meteor., 74, 119137.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2003: Turbulent Flows. Cambridge University Press, 771 pp.

  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351382.

    • Search Google Scholar
    • Export Citation
  • Renno, N. O., and Coauthors, 2004: MATADOR 2002: A pilot experiment on convective plumes and dust devils. J. Geophys. Res., 109, E07001, doi:10.1029/2003JE002219.

    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., D. Spano, and K. T. Paw U, 1996: Surface renewal analysis for sensible and latent heat flux density. Bound.-Layer Meteor., 77, 249266.

    • Search Google Scholar
    • Export Citation
  • Spano, D., R. L. Snyder, P. Duce, and K. T. Paw U, 1997: Surface renewal analysis for sensible heat flux density using structure functions. Agric. For. Meteor., 86, 259271.

    • Search Google Scholar
    • Export Citation
  • Spano, D., R. L. Snyder, P. Duce, and K. T. Paw U, 2000: Estimating sensible and latent heat flux densities from grapevine canopies using surface renewal. Agric. For. Meteor., 104, 171183.

    • Search Google Scholar
    • Export Citation
  • Sparrow, E. M., R. B. Husar, and R. J. Goldstein, 1970: Observations and other characteristics of thermals. J. Fluid Mech., 41, 793800.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1997: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Townsend, A. A., 1959: Temperature fluctuation over a heated horizontal surface. Fluid Mech., 5, 209241.

  • Townsend, A. A., 1961: Equilibrium layers and wall turbulence. J. Fluid Mech., 11, 97120.

  • Vogt, R., 2008: Visualisation of turbulent exchange using a thermal camera. Extended Abstracts, 18th Symp. on Boundary Layer and Turbulence, Stockholm, Sweden, Amer. Meteor. Soc., 8B.1. [Available online at http://ams.confex.com/ams/18BLT/techprogram/paper_140094.htm.]

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and J. E. Tillman, 1980: The three-dimensional structure of convection in the atmospheric surface layer. J. Atmos. Sci., 37, 24242443.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and J. A. Businger, 1983: Thermally indirect motions in the convective atmospheric boundary layer. J. Atmos. Sci., 40, 343358.

    • Search Google Scholar
    • Export Citation
  • Williams, A. G., and J. M. Hacker, 1992: Interactions between coherent eddies in the lower convective boundary layer. Bound.-Layer Meteor., 64, 5574.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., 1988: Convection in the atmospheric boundary layer. Earth Sci. Rev., 25, 179198.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 732 189 25
PDF Downloads 265 68 4