The Relative Humidity in an Isentropic Advection–Condensation Model: Limited Poleward Influence and Properties of Subtropical Minima

Paul A. O’Gorman Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Paul A. O’Gorman in
Current site
Google Scholar
PubMed
Close
,
Nicolas Lamquin California Institute of Technology, Pasadena, California

Search for other papers by Nicolas Lamquin in
Current site
Google Scholar
PubMed
Close
,
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
, and
Martin S. Singh Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Martin S. Singh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An idealized model of advection and condensation of water vapor is considered as a representation of processes influencing the humidity distribution along isentropic surfaces in the free troposphere. Results are presented for how the mean relative humidity distribution varies in response to changes in the distribution of saturation specific humidity and in the amplitude of a tropical moisture source. Changes in the tropical moisture source are found to have little effect on the relative humidity poleward of the subtropical minima, suggesting a lack of poleward influence despite much greater water vapor concentrations at lower latitudes. The subtropical minima in relative humidity are found to be located just equatorward of the inflection points of the saturation specific humidity profile along the isentropic surface. The degree of mean subsaturation is found to vary with the magnitude of the meridional gradient of saturation specific humidity when other parameters are held fixed.

The atmospheric relevance of these results is investigated by comparison with the positions of the relative humidity minima in reanalysis data and by examining poleward influence of relative humidity in simulations with an idealized general circulation model. It is suggested that the limited poleward influence of relative humidity may constrain the propagation of errors in simulated humidity fields.

Current affiliation: ACRI-ST, Sophia-Antipolis CEDEX, France.

Corresponding author address: Paul A. O’Gorman, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: pog@mit.edu

Abstract

An idealized model of advection and condensation of water vapor is considered as a representation of processes influencing the humidity distribution along isentropic surfaces in the free troposphere. Results are presented for how the mean relative humidity distribution varies in response to changes in the distribution of saturation specific humidity and in the amplitude of a tropical moisture source. Changes in the tropical moisture source are found to have little effect on the relative humidity poleward of the subtropical minima, suggesting a lack of poleward influence despite much greater water vapor concentrations at lower latitudes. The subtropical minima in relative humidity are found to be located just equatorward of the inflection points of the saturation specific humidity profile along the isentropic surface. The degree of mean subsaturation is found to vary with the magnitude of the meridional gradient of saturation specific humidity when other parameters are held fixed.

The atmospheric relevance of these results is investigated by comparison with the positions of the relative humidity minima in reanalysis data and by examining poleward influence of relative humidity in simulations with an idealized general circulation model. It is suggested that the limited poleward influence of relative humidity may constrain the propagation of errors in simulated humidity fields.

Current affiliation: ACRI-ST, Sophia-Antipolis CEDEX, France.

Corresponding author address: Paul A. O’Gorman, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: pog@mit.edu
Save
  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164184.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Couhert, A., T. Schneider, J. Li, D. E. Waliser, and A. M. Tompkins, 2010: The maintenance of the relative humidity of the subtropical free troposphere. J. Climate, 23, 390403.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J. Y. Grandpeix, J. M. Piriou, J. L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2000: Simulations of tropical upper tropospheric humidity. J. Geophys. Res., 105, 20 15520 163.

  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical humidity dynamics using tracers of last saturation. J. Atmos. Sci., 62, 33533367.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475.

  • Hurley, J. V., and J. Galewsky, 2010a: A last saturation analysis of ENSO humidity variability in the subtropical Pacific. J. Climate, 23, 918931.

    • Search Google Scholar
    • Export Citation
  • Hurley, J. V., and J. Galewsky, 2010b: A last-saturation diagnosis of subtropical water vapor response to global warming. Geophys. Res. Lett., 37, L06702, doi:10.1029/2009GL042316.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., and W. J. Ingram, 1992: Carbon dioxide and climate: Mechanisms of changes in cloud. J. Climate, 5, 521.

  • O’Gorman, P. A., and T. Schneider, 2006: Stochastic models for the kinematics of moisture transport and condensation in homogeneous turbulent flows. J. Atmos. Sci., 63, 29923005.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy–eddy interactions. Geophys. Res. Lett., 34, L22801, doi:10.1029/2007GL031779.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806.

  • Pierrehumbert, R. T., and R. Roca, 1998: Evidence for control of Atlantic subtropical humidity by large scale advection. Geophys. Res. Lett., 25, 45374540.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., H. Brogniez, and R. Roca, 2007: On the relative humidity of the atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 143–185.

    • Search Google Scholar
    • Export Citation
  • Salathé E. P., Jr., and D. L.Hartmann, 1997: A trajectory analysis of tropical upper-tropospheric moisture and convection. J. Climate, 10, 25332547.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688.

  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., K. L. Smith, P. A. O’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1996: Maintenance of the free-tropospheric tropical water vapor distribution. Part II: Simulation by large-scale advection. J. Climate, 9, 29192934.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., W. Ingram, Y. Tsushima, M. Satoh, M. Roberts, P. L. Vidale, and P. A. O’Gorman, 2010a: Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104, doi:10.1029/2009JD012585.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova, 2010b: Tropospheric water vapor, convection, and climate. Rev. Geophys., 48, RG2001, doi:10.1029/2009RG000301.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469, 1348.

    • Search Google Scholar
    • Export Citation
  • Sukhatme, J., and W. R. Young, 2011: The advection-condensation model and water vapour PDFs. Quart. J. Roy. Meteor. Soc., 137, 15611572.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529556.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wright, J. S., A. Sobel, and J. Galewsky, 2010: Diagnosis of zonal mean relative humidity changes in a warmer climate. J. Climate, 23, 45564569.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and R. T. Pierrehumbert, 1994: Production of dry air by isentropic mixing. J. Atmos. Sci., 51, 34373454.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 90 7
PDF Downloads 200 62 4