The Mechanical Energies of the Global Atmosphere in El Niño and La Niña Years

Liming Li Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas

Search for other papers by Liming Li in
Current site
Google Scholar
PubMed
Close
,
Xun Jiang Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas

Search for other papers by Xun Jiang in
Current site
Google Scholar
PubMed
Close
,
Moustafa T. Chahine Science Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Moustafa T. Chahine in
Current site
Google Scholar
PubMed
Close
,
Jingqian Wang Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas

Search for other papers by Jingqian Wang in
Current site
Google Scholar
PubMed
Close
, and
Yuk. L. Yung Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Yuk. L. Yung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two meteorological reanalysis datasets are analyzed to determine the mechanical energies of the global atmosphere in the El Niño and La Niña years. The general consistency of the mean energy components between the two datasets reveals ~1%–3% increase and ~2%–3% decrease in the mean energies in the El Niño years and La Niña years, respectively. These analyses further reveal that the tropospheric temperature responds to the sea surface temperature anomaly with a time lag of two months, which leads to the varying mean atmospheric energies in the El Niño and La Niña years.

Corresponding author address: Liming Li, Department of Earth and Atmospheric Sciences, University of Houston, 312 Science and Research Building 1, Rm. 312, Houston, TX 77204-5007. E-mail: lli7@mail.uh.edu

Abstract

Two meteorological reanalysis datasets are analyzed to determine the mechanical energies of the global atmosphere in the El Niño and La Niña years. The general consistency of the mean energy components between the two datasets reveals ~1%–3% increase and ~2%–3% decrease in the mean energies in the El Niño years and La Niña years, respectively. These analyses further reveal that the tropospheric temperature responds to the sea surface temperature anomaly with a time lag of two months, which leads to the varying mean atmospheric energies in the El Niño and La Niña years.

Corresponding author address: Liming Li, Department of Earth and Atmospheric Sciences, University of Houston, 312 Science and Research Building 1, Rm. 312, Houston, TX 77204-5007. E-mail: lli7@mail.uh.edu
Save
  • Boer, G. J., and S. Lambert, 2008: The energy cycle in atmospheric models. Climate Dyn., 30, 371390.

  • Devore, J. L., 1982: Probability and Statistics for Engineering and the Sciences. 1st ed. Brooks/Cole, 640 pp.

  • Goddard, L., and S. G. Philander, 2000: The energetics of El Niño and La Niña. J. Climate, 13, 14961516.

  • Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmospheric models. J. Atmos. Sci., 43, 606630.

  • Hu, Q., Y. Tawaye, and S. Feng, 2004: Variations of the Northern Hemisphere atmospheric energetics: 1948–2000. J. Climate, 17, 19751986.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Krueger, A. F., J. S. Winston, and D. A. Haines, 1965: Computation of atmospheric energy and its transformation for the Northern Hemisphere for a recent five-year period. Mon. Wea. Rev., 93, 227238.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, doi:10.1029/2007GL029985.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167.

  • Margules, M., 1903: Uber die Energie der Sturme. Jahrb. Zentralanst. Meteor., 40, 126. (English translation by C. Abbe, 1910: The Mechanics of the Earth’s Atmosphere: A Collection of Translations. No. 51, Smithsonian Institution, 553–595.)

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimate of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493.

  • Oort, A. H., and J. P. Peixoto, 1974: The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res., 79, 27052719.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixoto, 1976: On the variability of the atmospheric energy cycle within a 5-year period. J. Geophys. Res., 81, 36433659.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Phillips, N. A., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82, 123164.

  • Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Y. Hayashi, 1990: Observed and simulated energy cycles in the frequency domain. J. Atmos. Sci., 47, 12431254.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Steinheimer, M., M. Hantel, and P. Bechtold, 2008: Convection in Lorenz’s global energy cycle with the ECMWF model. Tellus, 60, 10011022.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wiin-Nielsen, A., 1959: A study of energy conversion and meridional circulation for the large-scale motion in the atmosphere. Mon. Wea. Rev., 87, 319332.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., 1985: Stability of a simple air-sea coupled model in the tropic. Couple Ocean–Atmospheric Models, J. Nihoul, Ed., Elsevier Oceanography Series, Vol. 40, Elsevier, 637–657.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and prediction fields derived from the microwave sounding unit. J. Climate, 7, 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 250 87 28
PDF Downloads 154 54 3