• Battisti, D. S., , and D. D. Ovens, 1995: The dependence of the low-level equatorial easterly jet on Hadley and Walker circulations. J. Atmos. Sci., 52 , 39113931.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., , and K. A. Emanuel, 2008: Wind–evaporation feedback and abrupt seasonal transition of weak, axisymmetric Hadley circulations. J. Atmos. Sci., 65 , 21942214.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D., , B. Hoskins, , and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65 , 28422860.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , K. A. Dahl, , and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33 , L01702. doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., , and G. L. Potter, 1988: A methodology for understanding and intercomparing atmospheric climate feedback processes in general circulation models. J. Geophys. Res., 93 , 83058314.

    • Search Google Scholar
    • Export Citation
  • Di Nezio, P. N., , A. Clement, , G. Vecchi, , B. Soden, , B. Kirtman, , and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22 , 48734892.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1993: A cumulus representation based on the episodic mixing model: The importance of mixing and microphysics in predicting humidity. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 185–192.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64 , 19591976.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65 , 10491062.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , I. M. Held, , and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64 , 16801693.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., , H. Le Treut, , and L. Li, 2008: Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus, 60 , 863884.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., , H. Le Treut, , and L. Li, 2009: The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Climate, 22 , 39934013.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Held, I. M., , and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37 , 515533.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Hourdin, F., and Coauthors 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27 , 787813.

    • Search Google Scholar
    • Export Citation
  • Huber, M., 2009: Climate change: Snakes tell a torrid tale. Nature, 457 , 669671. doi:10.1038/457669a.

  • Kang, S. M., , D. M. W. Frierson, , and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66 , 28122827.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., , and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58 , 28592871.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., , and D. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62 , 371389.

    • Search Google Scholar
    • Export Citation
  • Kump, L. R., , and D. Pollard, 2008: Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 320 , 195. doi:10.1126/science.1153883.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45 , 24162427.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. A. Vecchi, , and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34 , L06805. doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21 , 58355851.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , K. Bryan, , and M. J. Spelman, 1975: A global ocean–atmosphere climate model. Part I: The atmospheric circulation. J. Phys. Oceanogr., 5 , 329.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., , and A. Clement, 2006: Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett., 33 , L01810. doi:10.1029/2005GL024406.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1 , 101107. doi:10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parametrizations: II: Results for the Met Office model. Atmos. Sci. Lett., 1 , 108114. doi:10.1006/asle.2000.0024.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

  • Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50 , 18741887.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones. Part II: Sensitivity to meridional SST distribution. J. Atmos. Sci., 52 , 11281141.

    • Search Google Scholar
    • Export Citation
  • Oort, A., , and J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9 , 27512767.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52 , 17841806.

  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50 , 12111227.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34 , 655688.

  • Seager, R., , N. Harnik, , Y. Kushnir, , W. Robinson, , and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , J. Nilsson, , and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2 , 123139.

  • Suarez, M. J., , and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci., 49 , 15411556.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., , N. Ishizaki, , and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A , 250269.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16 , 37063722.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and J. Chen, 1989: On the zonal-scale selection and vertical structure of equatorial intraseasonal waves. Quart. J. Roy. Meteor. Soc., 115 , 13011323.

    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Circulation sensitivity to tropopause height. J. Atmos. Sci., 63 , 19541961.

  • Williamson, D. L., , and J. G. Olson, 2003: Dependence of aqua-planet simulations on time step. Quart. J. Roy. Meteor. Soc., 129 , 20492064.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , W. W. Grabowski, , and M. W. Moncrieff, 2002: Mean-state convective circulations over large-scale tropical SST gradients. J. Atmos. Sci., 59 , 15781592.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , and H. Song, 2006: Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett., 33 , L12701. doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 3
PDF Downloads 25 25 2

Some Atmospheric Processes Governing the Large-Scale Tropical Circulation in Idealized Aquaplanet Simulations

View More View Less
  • 1 Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, IPSL/CNRS, Université Pierre et Marie Curie, Paris, France
  • | 2 Laboratoire de Météorologie Dynamique, IPSL/CNRS, Paris, France
  • | 3 Institut Pierre Simon Laplace, CNRS, Paris, France
© Get Permissions
Restricted access

Abstract

The large-scale tropical atmospheric circulation is analyzed in idealized aquaplanet simulations using an atmospheric general circulation model. Idealized sea surface temperatures (SSTs) are used as lower-boundary conditions to provoke modifications of the atmospheric general circulation. Results show that 1) an increase in the meridional SST gradients of the tropical region drastically strengthens the Hadley circulation intensity, 2) the presence of equatorial zonal SST anomalies weakens the Hadley cells and reinforces the Walker circulation, and 3) a uniform SST warming causes small and nonsystematic changes of the Hadley and Walker circulations. In all simulations, the jet streams strengthen and move equatorward as the Hadley cells strengthen and become narrower.

Some relevant mechanisms are then proposed to interpret the large range of behaviors obtained from the simulations. First, the zonal momentum transport by transient and stationary eddies is shown to modulate the eddy-driven jets, which causes the poleward displacements of the jet streams. Second, it is found that the Hadley circulation adjusts to the changes of the poleward moist static energy flux and gross moist static stability, associated with the geographical distribution of convection and midlatitude eddies. The Walker circulation intensity corresponds to the zonal moist static energy transport induced by the zonal anomalies of the turbulent fluxes and radiative cooling. These experiments provide some hints to understand a few robust changes of the atmospheric circulation simulated by ocean–atmosphere coupled models for future and past climates.

Corresponding author address: Dr. Guillaume Gastineau, LOCEAN/IPSL, Université Pierre et Marie Curie, 4 place Jussieu, BP 100, 75252 Paris CEDEX 05, France. Email: guillaume.gastineau@locean-ipsl.upmc.fr

Abstract

The large-scale tropical atmospheric circulation is analyzed in idealized aquaplanet simulations using an atmospheric general circulation model. Idealized sea surface temperatures (SSTs) are used as lower-boundary conditions to provoke modifications of the atmospheric general circulation. Results show that 1) an increase in the meridional SST gradients of the tropical region drastically strengthens the Hadley circulation intensity, 2) the presence of equatorial zonal SST anomalies weakens the Hadley cells and reinforces the Walker circulation, and 3) a uniform SST warming causes small and nonsystematic changes of the Hadley and Walker circulations. In all simulations, the jet streams strengthen and move equatorward as the Hadley cells strengthen and become narrower.

Some relevant mechanisms are then proposed to interpret the large range of behaviors obtained from the simulations. First, the zonal momentum transport by transient and stationary eddies is shown to modulate the eddy-driven jets, which causes the poleward displacements of the jet streams. Second, it is found that the Hadley circulation adjusts to the changes of the poleward moist static energy flux and gross moist static stability, associated with the geographical distribution of convection and midlatitude eddies. The Walker circulation intensity corresponds to the zonal moist static energy transport induced by the zonal anomalies of the turbulent fluxes and radiative cooling. These experiments provide some hints to understand a few robust changes of the atmospheric circulation simulated by ocean–atmosphere coupled models for future and past climates.

Corresponding author address: Dr. Guillaume Gastineau, LOCEAN/IPSL, Université Pierre et Marie Curie, 4 place Jussieu, BP 100, 75252 Paris CEDEX 05, France. Email: guillaume.gastineau@locean-ipsl.upmc.fr

Save