• Adler, R. F., and Coauthors 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1981: Parameterization of trade-cumulus cloud amounts. J. Atmos. Sci., 38 , 97105.

  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., , J. Mailhot, , C. Girard, , and P. Vaillancourt, 2005: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133 , 19381960.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32 , 626641.

  • Bretherton, C. S., 1993: Understanding Albrecht’s model of trade cumulus cloud fields. J. Atmos. Sci., 50 , 22642283.

  • Bretherton, C. S., , J. R. McCaa, , and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132 , 864882.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. N. Blossey, , and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62 , 42734292.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128 , 10751093.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., , K. K. Droegemeier, , and A. M. Blyth, 1998: Entrainment and detrainment in numerical simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 55 , 34403455.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., , D. A. Randall, , and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20 , 91112.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , C. Quick, , S. Matthias-Maser, , S. K. Mitra, , and R. Jaenicke, 2001: The ice nucleating ability of pollen. Part I: Laboratory studies in deposition and condensation freezing modes. Atmos. Res., 58 , 7587.

    • Search Google Scholar
    • Export Citation
  • Drake, F., 1993: Global cloud cover and cloud water path from ISCCP C2 data. Int. J. Climatol., 13 , 581605.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., , and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56 , 17661782.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1938: Kolloid-meteorologische Vorgänge bei Niederschlagsbildung. Meteor. Z., 55 , 121133.

  • Fowler, L. D., , and D. A. Randall, 2002: Interactions between cloud microphysics and cumulus convection in a general circulation model. J. Atmos. Sci., 59 , 30743098.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 2001: Cloud-base fluxes in the cumulus-capped boundary layer. Quart. J. Roy. Meteor. Soc., 127 , 407421.

  • Greenwald, T. J., , G. L. Stephens, , T. H. Vonderhaar, , and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using special sensor microwave imager (SSM/I) observations. J. Geophys. Res., 98 , 1847118488.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., , and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101 , 4455.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., , U. Lohmann, , R. Erdin, , and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3 .doi:10.1088/1748-9326/3/2/025003.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54 , 20202034.

  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78 , 197208.

  • Korolev, A. V., 2008: Rates of phase transformations in mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 134 , 595608.

  • Lin, H., , and W. R. Leaitch, 1997: Development of an in-cloud aerosol activation parameterization for climate modelling. Proc. Workshop on Measurement of Cloud Properties for Forecasts of Weather, Air Quality and Climate, Geneva, Switzerland, World Meteorological Organization, 328–335.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59 , 647656.

  • Lohmann, U., 2008: Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys., 8 , 21152131.

  • Lohmann, U., , and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12 , 557572.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed phase clouds. J. Atmos. Sci., 63 , 968982.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , J. Feichter, , C. C. Chuang, , and J. E. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104 , 91699198.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , P. Stier, , C. Hoose, , S. Ferrachat, , S. Kloster, , E. Roeckner, , and J. Zhang, 2007: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys., 7 , 34253446.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., , and C. S. Bretherton, 2004: A new parameterization of shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., 132 , 883896.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , D. F. Young, , B. A. Weilicki, , S. Sun-Mack, , Q. Z. Trepte, , Y. Chen, , P. W. Heck, , and X. Dong, 2002: Global cloud database from VIRS and MODIS for CERES. Optical Remote Sensing of the Atmosphere and Clouds III, H.-L. Huang, D. Lu, and Y. Sasano, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4891), 361–369.

    • Search Google Scholar
    • Export Citation
  • Morris, C. E., , D. G. Georgakopoulos, , and D. C. Sands, 2004: Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV France, 121 , 87103.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., , A. P. Siebesma, , G. Lenderink, , and A. A. M. Holtslag, 2004: An evaluation of mass flux closures for diurnal cycles of shallow cumulus. Mon. Wea. Rev., 132 , 25252538.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., , J. D. Neelin, , and B. Stevens, 2007: Impact mechanisms of shallow cumulus convection on tropical climate dynamics. J. Climate, 20 , 26232642.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102 , 1728.

  • Nober, F. J., , and H. F. Graf, 2005: A new convective cloud field model based on principles of self-organisation. Atmos. Chem. Phys., 5 , 27492759.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

    • Search Google Scholar
    • Export Citation
  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmospheric Model. J. Climate, 22 , 34493469.

    • Search Google Scholar
    • Export Citation
  • Raga, G. B., , J. B. Jensen, , and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47 , 338355.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 635–638.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., , and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131 , 639673.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors 2007: Rain in Shallow Cumulus over the Ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88 , 19121928.

  • Richardson, M. S., and Coauthors 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112 , D02209. doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Rosinski, J., , and G. Morgan, 1991: Cloud condensation nuclei as a source of ice-forming nuclei in clouds. J. Aerosol Sci., 22 , 123133.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Short, D. A., , and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13 , 41074124.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., , and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., , and A. A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53 , 23542364.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58 , 18701891.

  • Stier, P., and Coauthors 2005: The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys., 5 , 11251156.

  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4 , 9194.

  • Stubenrauch, C. J. & , and S. Kinne GEWEX Cloud Assessment Team 2009: Assessment of global cloud climatologies. GEWEX News, No. 19, International GEWEX Project Office, Silver Spring, MD, 6–7.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed-layer studies. J. Climate Appl. Meteor., 24 , 4956.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and D. P. Stepaniak, 2003: Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Climate, 16 , 37063722.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1985: Nucleation terminology. J. Aerosol Sci., 16 , 575576.

  • Vali, G., 1996: Ice nucleation: A review. Nucleation and Atmospheric Aerosols, M. Kulmala and P. Wagner, Eds., Pergamon Press, 271–279.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., , and N. A. McFarlane, 2002: Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci., 59 , 14051430.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., , N. A. McFarlane, , and M. Lazare, 2005: The role of shallow convection in the water and energy cycles of the atmosphere. Climate Dyn., 60 , 262278.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7 , 449457.

  • Warren, S. G., , and C. J. Hahn, 2002: Clouds/climatology. Encyclopedia of Atmospheric Sciences, J. A. Holton, J. A. Pyle, and J. A. Curry, Eds., Academic Press, 476–483.

    • Search Google Scholar
    • Export Citation
  • Weng, F. Z., , and N. C. Grody, 1994: Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I). J. Geophys. Res., 99 , 2553525551.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J. H. G. Cho, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , U. Lohmann, , and P. Stier, 2005: A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J. Geophys. Res., 110 , D15S07. doi:10.1029/2004JD005128.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 3
PDF Downloads 7 7 1

Improvement and Implementation of a Parameterization for Shallow Cumulus in the Global Climate Model ECHAM5-HAM

View More View Less
  • 1 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
  • | 2 Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada
© Get Permissions
Restricted access

Abstract

A transient shallow-convection scheme is implemented into the general circulation model ECHAM5 and the coupled aerosol model HAM, developed at the Max Planck Institute for Meteorology in Hamburg. The shallow-convection scheme is extended to take the ice phase into account. In addition, a detailed double-moment microphysics approach has been added. In this approach, the freezing processes and precipitation formation are dependent on aerosols. Furthermore, in the scheme, tracers are transported and scavenged consistently as in the rest of the model. Results of a single-column model simulation for the Barbados Oceanography and Meteorology Experiment (BOMEX) campaign are compared with previously published large-eddy simulation (LES) results. Compared to the standard version, the global ECHAM5-HAM simulations with the newly implemented scheme show a decreased frequency of shallow convection in better agreement with LES. Less shallow convection is compensated by more stratus and stratocumulus. Deep and especially midlevel convection are markedly affected by those changes, which in turn influence high-level clouds. Generally, a better agreement with the observations can be obtained. For a better understanding of the scheme’s impact and to test different setting parameters, sensitivity analyses are performed. The mixing properties, cloud-base vertical velocity, and launching layer of the test parcel, respectively, are varied. In this context, results from simulations without shallow convection are also presented.

Corresponding author address: Francesco Isotta, Institute for Atmospheric and Climate Science, Universitätsstrasse 16, CH-8092 Zurich, Switzerland. Email: francesco.isotta@alumni.ethz.ch

Abstract

A transient shallow-convection scheme is implemented into the general circulation model ECHAM5 and the coupled aerosol model HAM, developed at the Max Planck Institute for Meteorology in Hamburg. The shallow-convection scheme is extended to take the ice phase into account. In addition, a detailed double-moment microphysics approach has been added. In this approach, the freezing processes and precipitation formation are dependent on aerosols. Furthermore, in the scheme, tracers are transported and scavenged consistently as in the rest of the model. Results of a single-column model simulation for the Barbados Oceanography and Meteorology Experiment (BOMEX) campaign are compared with previously published large-eddy simulation (LES) results. Compared to the standard version, the global ECHAM5-HAM simulations with the newly implemented scheme show a decreased frequency of shallow convection in better agreement with LES. Less shallow convection is compensated by more stratus and stratocumulus. Deep and especially midlevel convection are markedly affected by those changes, which in turn influence high-level clouds. Generally, a better agreement with the observations can be obtained. For a better understanding of the scheme’s impact and to test different setting parameters, sensitivity analyses are performed. The mixing properties, cloud-base vertical velocity, and launching layer of the test parcel, respectively, are varied. In this context, results from simulations without shallow convection are also presented.

Corresponding author address: Francesco Isotta, Institute for Atmospheric and Climate Science, Universitätsstrasse 16, CH-8092 Zurich, Switzerland. Email: francesco.isotta@alumni.ethz.ch

Save