• Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40 , 18771883.

  • Andrews, D. G., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear. The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian mean flow. J. Fluid Mech., 89 , 609646.

  • Arnol’d, V. I., 1966: On an a priori estimate in the theory of hydrodynamical stability. Amer. Math. Soc. Transl. Ser., 79 , 267269.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120 , 947957.

  • Bretherton, F. P., , and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302A , 529554.

  • Brunet, G., 1994: Empirical normal-mode analysis of atmospheric data. J. Atmos. Sci., 51 , 932952.

  • Brunet, G., , and R. Vautard, 1996: Empirical normal mode versus empirical orthogonal functions for statistical prediction. J. Atmos. Sci., 53 , 34683489.

    • Search Google Scholar
    • Export Citation
  • Charron, M., , and G. Brunet, 1999: Gravity wave diagnosis using empirical normal modes. J. Atmos. Sci., 56 , 27062727.

  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , G. Brunet, , and M. K. Yau, 2003: Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics. J. Atmos. Sci., 60 , 12391256.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1995: Pseudomomentum diagnostics for two-dimensional stratified compressible flow. J. Atmos. Sci., 52 , 39974009.

  • Edmon, H. J. J., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37 , 26002616.

    • Search Google Scholar
    • Export Citation
  • Fortner, L. E., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39 , 633639.

  • Hawkins, J. D., , M. Helveston, , T. F. Lee, , F. J. Turk, , K. Richardson, , C. Sampson, , J. Kent, , and R. Wade, 2006: Tropical cyclone multiple eyewall configurations. Extended Abstracts, 27th Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 6B.1. [Available online at http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108864.htm].

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., 1988: Forced, dissipative generalizations of finite-amplitude wave-activity conservation relations for zonal and nonzonal basic flows. J. Atmos. Sci., 45 , 23522362.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1985: Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci., 42 , 22802288.

  • Houze, R. A., and Coauthors 2006: The hurricane rainband and intensity change experiment: Observations and modelling of hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87 , 15031521.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel. Bull. Amer. Meteor. Soc., 85 , 151153.

  • Kuo, H.-C., , W. H. Schubert, , C.-L. Tsai, , and Y.-F. Kuo, 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136 , 51835198.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D.-L. Zhang, , and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125 , 30733093.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , D.-L. Zhang, , and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner core structures. Mon. Wea. Rev., 127 , 25972616.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y. H., 2008: Diagnostic study of hurricane asymmetries using empirical normal modes. Ph.D. thesis, McGill University, 188 pp.

  • Martinez, Y. H., , G. Brunet, , and M. K. Yau, 2010a: On the dynamics of two-dimensional hurricane-like vortex symmetrization. J. Atmos. Sci., 67 , 35593580.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y. H., , G. Brunet, , and M. K. Yau, 2010b: On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67 , 32533268.

    • Search Google Scholar
    • Export Citation
  • Molinari, J. S., , S. Skubis, , and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity evolution. J. Atmos. Sci., 52 , 35933606.

    • Search Google Scholar
    • Export Citation
  • Molinari, J. S., , S. Skubis, , D. Vollaro, , F. Alsheimer, , and H. E. Willoughby, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55 , 26322644.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and B. F. Farrell, 1999: Generalized stability analysis of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56 , 12821307.

    • Search Google Scholar
    • Export Citation
  • Nong, S., , and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129 , 33233338.

    • Search Google Scholar
    • Export Citation
  • Plaut, G., , and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51 , 210236.

    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., , and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123 , 35023517.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., 1985: Wave–mean flow interactions and hurricane development. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 140–141.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , and T. G. Shepherd, 1992: Nonlinear wave-activity conservation laws and Hamiltonian structure for the two-dimensional anelastic equations. J. Atmos. Sci., 49 , 527.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1990: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Advances in Geophysics, Vol. 32, Academic Press, 287–338.

    • Search Google Scholar
    • Export Citation
  • Sirovich, L., , and R. Everson, 1992: Management and analysis of large scientific datasets. Int. J. Supercomput. Appl., 6 , 5068.

  • Tao, W.-K., , and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 1954.

  • Terwey, W. D., , and M. T. Montgomery, 2002: Wavenumber-2 and wavenumber-m vortex Rossby wave instabilities in a generalized three-region model. J. Atmos. Sci., 59 , 24212427.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., , and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113 , D12112. doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59 , 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66 , 12501273.

  • Weare, B. C., , and J. N. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110 , 481485.

  • Willoughby, H. E., 1978a: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35 , 838848.

  • Willoughby, H. E., 1978b: The vertical structure of hurricane rainbands and their interaction with the mean vortex. J. Atmos. Sci., 35 , 849858.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical hurricane core. Aust. Meteor. Mag., 36 , 183191.

  • Willoughby, H. E., 1990a: Temporal changes in the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242264.

  • Willoughby, H. E., 1990b: Gradient balance in tropical cyclones. J. Atmos. Sci., 47 , 265274.

  • Willoughby, H. E., 1990c: Linear normal modes of a moving, shallow-water barotropic vortex. J. Atmos. Sci., 47 , 21412148.

  • Willoughby, H. E., , and P. G. Black, 1996: Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77 , 543549.

  • Willoughby, H. E., , J. A. Clos, , and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39 , 395411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , H. L. Jin, , S. J. Lord, , and J. M. Piotrowicks, 1984: Hurricane structure and evolution as simulated by an axisymmetric, non-hydrostatic numerical model. J. Atmos. Sci., 41 , 11691186.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., , and P. B. Rhines, 1980: Rossby wave action, enstrophy and energy in forced mean flows. Geophys. Astrophys. Fluid Dyn., 15 , 3952.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., , G. Brunet, , and J. Derome, 2002: An empirical normal mode diagnostic algorithm applied to NCEP reanalyses. J. Atmos. Sci., 59 , 28112829.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 4
PDF Downloads 27 27 3

On the Dynamics of Concentric Eyewall Genesis: Space–Time Empirical Normal Modes Diagnosis

View More View Less
  • 1 Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada
© Get Permissions
Restricted access

Abstract

A novel statistical technique called space–time empirical normal mode (ST-ENM) is applied in a diagnostic study of the genesis of a secondary eyewall in a simulated hurricane using the nonhydrostatic, high-resolution fifth-generation Pennsylvania State University (PSU)–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). The bases obtained from the ST-ENM technique are nonstationary, dynamically relevant, and orthogonal in the sense of wave activity.

The wave activity spectra of the wavenumber-1 anomalies show that the leading modes (1–6) exhibit mainly characteristics of vortex Rossby waves (VRWs). These modes together explain about 75% of the total wavenumber-1 variance in a period of 24 h.

Analysis of the Eliassen–Palm (EP) flux and its time-mean divergence corresponding to the total contribution from these modes indicated that in the lower troposphere VRWs not only propagate inward (outward) in the primary eyewall region where the radial gradient of the basic-state potential vorticity is large and positive (large and negative), but there is also wave activity propagating outside the primary eyewall. Consequently, maximum cyclonic eddy angular momentum is transported not only inside the radius of maximum wind (RMW) by VRWs in the primary eyewall region, but also close to the location where the secondary eyewall forms by VRWs propagating outside the inner eyewall.

The fact that the critical radius for some of the ST-ENMs is contained inside the region where the secondary eyewall forms and the existence of a signal of maximum eddy cyclonic angular momentum flux propagating outward up to the critical radius suggests that a wave–mean flow interaction mechanism and redistribution of angular momentum may be suitable to explain important dynamical aspects of concentric eyewall genesis.

Corresponding author address: Yosvany H. Martinez, Meteorological Research Division, Environment Canada, 2121 TransCanada Highway, No. 453, Dorval QC H9P 1J3, Canada. Email: yosvany.martinez@eg.gc.ca

Abstract

A novel statistical technique called space–time empirical normal mode (ST-ENM) is applied in a diagnostic study of the genesis of a secondary eyewall in a simulated hurricane using the nonhydrostatic, high-resolution fifth-generation Pennsylvania State University (PSU)–National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). The bases obtained from the ST-ENM technique are nonstationary, dynamically relevant, and orthogonal in the sense of wave activity.

The wave activity spectra of the wavenumber-1 anomalies show that the leading modes (1–6) exhibit mainly characteristics of vortex Rossby waves (VRWs). These modes together explain about 75% of the total wavenumber-1 variance in a period of 24 h.

Analysis of the Eliassen–Palm (EP) flux and its time-mean divergence corresponding to the total contribution from these modes indicated that in the lower troposphere VRWs not only propagate inward (outward) in the primary eyewall region where the radial gradient of the basic-state potential vorticity is large and positive (large and negative), but there is also wave activity propagating outside the primary eyewall. Consequently, maximum cyclonic eddy angular momentum is transported not only inside the radius of maximum wind (RMW) by VRWs in the primary eyewall region, but also close to the location where the secondary eyewall forms by VRWs propagating outside the inner eyewall.

The fact that the critical radius for some of the ST-ENMs is contained inside the region where the secondary eyewall forms and the existence of a signal of maximum eddy cyclonic angular momentum flux propagating outward up to the critical radius suggests that a wave–mean flow interaction mechanism and redistribution of angular momentum may be suitable to explain important dynamical aspects of concentric eyewall genesis.

Corresponding author address: Yosvany H. Martinez, Meteorological Research Division, Environment Canada, 2121 TransCanada Highway, No. 453, Dorval QC H9P 1J3, Canada. Email: yosvany.martinez@eg.gc.ca

Save