• Barnes, G. M., , E. J. Zipser, , D. Jorgensen, , and F. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40 , 21252137.

    • Search Google Scholar
    • Export Citation
  • Bui, H. H., , R. K. Smith, , M. T. Montgomery, , and J. Y. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135 , 17151731.

    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., , and W. M. Gray, 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130 , 19892005.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5 , 1960.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , Y. Wang, , M. Satoh, , T. Nasuno, , H. Miura, , and W. Yanase, 2010: Multiscale interactions in the lifecycle of a tropical cyclone simulated in a global cloud-system-resolving model: Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138 , 43054327.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., , E. Ruprecht, , and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103 , 685690.

  • Hack, J. J., , and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43 , 15591573.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61 , 12091232.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., , and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137 , 32943315.

  • Holland, G. J., , and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110 , 723745.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58 , 24852501.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., , and C.-S. Liou, 1996: Implementation of an E–ε parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124 , 905918.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., , and R. A. Houze, 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44 , 12961317.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., , P. G. Black, , M. T. Montgomery, , and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136 , 12371259.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112 , 14081418.

  • Molinari, J., , and D. Vollaro, 1990: External influences on hurricane intensity. 2. Vertical structure and response of the hurricane vortex. J. Atmos. Sci., 47 , 19021918.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. Vollaro, , and S. Skubis, 1993: Application of the Eliassen balanced model to real-data tropical cyclones. Mon. Wea. Rev., 121 , 24092419.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130 , 18661881.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63 , 355386.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., , and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137 , 805821.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , M. T. Montgomery, , and R. E. Tuleya, 2002: Environmental interactions in the GFDL hurricane model for Hurricane Opal. Mon. Wea. Rev., 130 , 298317.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39 , 16871697.

  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , and M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134 , 13851395.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135 , 13211335.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129 , 13701394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130 , 30223036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97 , 93116.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008a: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65 , 15051527.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008b: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65 , 11581181.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66 , 12501273.

  • Wang, Y., , and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67 , 97116.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116 , 10321043.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., , and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116 , 10441056.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84 , 31733183.

  • Xu, J., , and Y. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67 , 18311852.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138 , 41354157.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 6
PDF Downloads 66 66 5

Balanced Contribution to the Intensification of a Tropical Cyclone Simulated in TCM4: Outer-Core Spinup Process

View More View Less
  • 1 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
© Get Permissions
Restricted access

Abstract

The balanced contribution to the intensification of a tropical cyclone simulated in the three-dimensional, nonhydrostatic, full-physics tropical cyclone model version 4 (TCM4), in particular the spinup of the outer-core circulation, is investigated by solving the Sawyer–Eliassen equation and by computing terms in the azimuthal-mean tangential wind tendency equation. Results demonstrate that the azimuthal-mean secondary circulation (radial and vertical circulation) and the spinup of the midtropospheric outer-core circulation in the simulated tropical cyclone are well captured by balance dynamics. The midtropospheric inflow develops in response to diabatic heating in mid–upper-tropospheric stratiform (anvil) clouds outside the eyewall in active spiral rainbands and transports absolute angular momentum inward to spin up the outer-core circulation. Although the azimuthal-mean diabatic heating rate in the eyewall is the largest, its contribution to radial winds and thus the spinup of outer-core circulation in the middle troposphere is rather weak. This is because the high inertial stability in the inner-core region resists the radial inflow in the middle troposphere, limiting the inward transport of absolute angular momentum. The result thus suggests that diabatic heating in spiral rainbands is the key to the continued growth of the storm-scale circulation.

* School of Ocean and Earth Science Technology Publication Number 8060 and International Pacific Research Center Publication Number 741.

+ Current affiliation: Faculty of Education and Human Sciences, Yokohama National University, Yokohama, Japan.

Corresponding author address: Dr. H. Fudeyasu, Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, Japan, 240-8501. Email: fude@ynu.ac.jp

Abstract

The balanced contribution to the intensification of a tropical cyclone simulated in the three-dimensional, nonhydrostatic, full-physics tropical cyclone model version 4 (TCM4), in particular the spinup of the outer-core circulation, is investigated by solving the Sawyer–Eliassen equation and by computing terms in the azimuthal-mean tangential wind tendency equation. Results demonstrate that the azimuthal-mean secondary circulation (radial and vertical circulation) and the spinup of the midtropospheric outer-core circulation in the simulated tropical cyclone are well captured by balance dynamics. The midtropospheric inflow develops in response to diabatic heating in mid–upper-tropospheric stratiform (anvil) clouds outside the eyewall in active spiral rainbands and transports absolute angular momentum inward to spin up the outer-core circulation. Although the azimuthal-mean diabatic heating rate in the eyewall is the largest, its contribution to radial winds and thus the spinup of outer-core circulation in the middle troposphere is rather weak. This is because the high inertial stability in the inner-core region resists the radial inflow in the middle troposphere, limiting the inward transport of absolute angular momentum. The result thus suggests that diabatic heating in spiral rainbands is the key to the continued growth of the storm-scale circulation.

* School of Ocean and Earth Science Technology Publication Number 8060 and International Pacific Research Center Publication Number 741.

+ Current affiliation: Faculty of Education and Human Sciences, Yokohama National University, Yokohama, Japan.

Corresponding author address: Dr. H. Fudeyasu, Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, Japan, 240-8501. Email: fude@ynu.ac.jp

Save