• Chang, L., , S. Palo, , M. Hagan, , J. Richter, , R. Garcia, , D. Riggin, , and D. Fritts, 2008: Structure of the migrating diurnal tide in the Whole Atmosphere Community Climate Model (WACCM). Adv. Space Res., 41 , 13981407.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., , and R. S. Lindzen, 1970: Atmospheric Tides. D. Reidel, 200 pp.

  • Cordero, E. C., , and P. M. D. Forster, 2006: Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys., 6 , 53695380.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56 , 38743891.

  • Dai, A., , and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17 , 930951.

    • Search Google Scholar
    • Export Citation
  • Forbes, J. M., 1995: Tidal and planetary waves. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophys. Monogr., Vol. 87, Amer. Geophys. Union, 67–87.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80 , 2955.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., , J. M. Forbes, , and A. Richmond, 2004: Atmospheric tides. The Encyclopedia of Atmospheric Sciences, Vol. 1, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Academic Press, 159–165.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , and R. R. Garcia, 1984: Long-period variations in the solar semidiurnal atmospheric tide. J. Geophys. Res., 89 , 1170511710.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , S. C. Ryan, , and W. Ohfuchi, 2008: Topographic effects on the solar semidiurnal surface tide simulated in a very fine resolution general circulation model. J. Geophys. Res., 113 , D17114. doi:10.1029/2008JD010115.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1956: The geographical distribution of the solar semidiurnal pressure oscillation. Meteor. Pap., 2 , 136.

  • Hunt, D. C., , and S. Manabe, 1968: An investigation of thermal tidal oscillations in the earth’s atmosphere using a general circulation model. Mon. Wea. Rev., 96 , 753766.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., , C. B. Leovy, , B. A. Boville, , and B. P. Briegleb, 1994: Diurnal heating and cloudiness in the NCAR Community Climate Model (CCM2). J. Climate, 7 , 869889.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1978: Effect of daily variations of cumulonimbus activity on the atmospheric semidiurnal tide. Mon. Wea. Rev., 106 , 526533.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , E. S. Batten, , and J.-W. Kim, 1968: Oscillations in atmospheres with tops. Mon. Wea. Rev., 96 , 133140.

  • Meehl, G. A., , C. Covey, , T. Delworth, , M. Latif, , B. McAvaney, , J. F. B. Mitchell, , R. J. Stouffer, , and K. E. Taylor, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Search Google Scholar
    • Export Citation
  • Pirscher, B., , U. Foelsche, , M. Borsche, , G. Kirchengast, , and Y.-H. Kuo, 2010: Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data. J. Geophys. Res., 115 , D14108. doi:10.1029/2009JD013008.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Richter, J., , F. Sassi, , R. R. Garcia, , K. Matthes, , and C. A. Fischer, 2008: Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3). J. Geophys. Res., 113 , D08101. doi:10.1029/2007JD009269.

    • Search Google Scholar
    • Export Citation
  • Sassi, F. S., , R. R. Garcia, , B. A. Boville, , and H. Liu, 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107 , 4380. doi:10.1029/2001JD001525.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , Z. Chen, , M. Marquis, , K. B. Averyt, , M. Tignor, , and H. L. Miller, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 483 pp.

  • Washington, W. W., , L. Buja, , and A. Craig, 2009: The computational future for climate and Earth system models: On the path to petaflop and beyond. Philos. Trans. Roy. Soc., 367A , 833846.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., , J. M. Slingo, , and B. J. Hoskins, 2004: The diurnal cycle of convection and atmospheric tides in an aquaplanet GCM. J. Atmos. Sci., 61 , 25592573.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F., , and K. Hamilton, 1986: Simulation of solar tides in the Canadian Climate Center general circulation model. J. Geophys. Res., 91 , 1187711896.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 189 21
PDF Downloads 155 155 21

The Surface-Pressure Signature of Atmospheric Tides in Modern Climate Models

View More View Less
  • 1 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This work examines near-surface-pressure tides in climate models that contributed to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); it compares them with tides both from observations and from the Whole Atmosphere Community Climate Model (WACCM), which extends from the earth’s surface to the thermosphere. Surprising consistency is found among observations and all model simulations, despite variation of the altitudes of model upper boundaries from 32 to 76 km in the IPCC models and at 135 km for WACCM. These results are consistent with previous suggestions that placing a model’s upper boundary at low altitude leads to partly compensating errors—such as reducing the forcing of the tides by ozone heating, but also introducing spurious waves at the upper boundary, which propagate to the surface.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Curt Covey, LLNL Mail Code L-103, 7000 East Avenue, Livermore, CA 94550. Email: covey1@llnl.gov

Abstract

Although atmospheric tides driven by solar heating are readily detectable at the earth’s surface as variations in air pressure, their simulations in current coupled global climate models have not been fully examined. This work examines near-surface-pressure tides in climate models that contributed to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); it compares them with tides both from observations and from the Whole Atmosphere Community Climate Model (WACCM), which extends from the earth’s surface to the thermosphere. Surprising consistency is found among observations and all model simulations, despite variation of the altitudes of model upper boundaries from 32 to 76 km in the IPCC models and at 135 km for WACCM. These results are consistent with previous suggestions that placing a model’s upper boundary at low altitude leads to partly compensating errors—such as reducing the forcing of the tides by ozone heating, but also introducing spurious waves at the upper boundary, which propagate to the surface.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Curt Covey, LLNL Mail Code L-103, 7000 East Avenue, Livermore, CA 94550. Email: covey1@llnl.gov

Save