• Abu-Mostafa, Y. S., , and D. Psaltis, 1984: Recognitive aspects of moment invariants. IEEE Trans. Pattern Anal. Mach. Intell., 6 , 698706.

    • Search Google Scholar
    • Export Citation
  • Allen, D. R., , L. Coy, , S. D. Eckermann, , J. P. McCormack, , G. L. Manney, , T. F. Hogan, , and Y.-J. Kim, 2006: NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming. Mon. Wea. Rev., 134 , 498518.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294 , 581584.

  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20 , 449469.

    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., , L. M. Polvani, , J. Austin, , and F. Li, 2008: The frequency and dynamics of stratospheric sudden warmings in the 21st century. J. Geophys. Res., 113 , D16116. doi:10.1029/2007JD009571.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Coughlin, K., , and L. J. Gray, 2009: A continuum of sudden stratospheric warmings. J. Atmos. Sci., 66 , 531540.

  • Dritschel, D. G., 1993: A fast contour dynamics method for many-vortex calculations in two-dimensional flows. Phys. Fluids, 5A , 173186.

    • Search Google Scholar
    • Export Citation
  • Gordon, A., 1999: Classification. 2nd ed. Chapman and Hall, 256 pp.

  • Hair, J., , R. Anderson, , R. Tatham, , and W. Black, 1995: Multivariate Data Analysis. 4th ed. Prentice Hall, 500 pp.

  • Hannachi, A., , I. T. Jolliffe, , and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27 , 11191152.

    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., , R. J. Tibshirani, , and J. Friedman, 2001: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 533 pp.

    • Search Google Scholar
    • Export Citation
  • Hirooka, T., , T. Ichimaru, , and H. Mukougawa, 2007: Predictability of stratospheric sudden warmings as inferred from ensemble forecast data: Intercomparison of 2001/02 and 2003/04 winters. J. Meteor. Soc. Japan, 85 , 919925.

    • Search Google Scholar
    • Export Citation
  • Hu, M.-K., 1962: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory, 8 , 179187.

  • Ichimaru, T., 2010: Predictability of stratospheric circulations and stratospheric sudden warmings. Ph.D. thesis, Kyushu University, 94 pp.

  • Kaufman, L., , and O. Rousseeuw, 1990: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, 368 pp.

  • Kuroda, Y., 2008: Role of the stratosphere on the predictability of medium-range weather forecast: A case study of winter 2003–2004. Geophys. Res. Lett., 35 , L19701. doi:10.1029/2008GL034902.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Meteor. Soc. Japan, 60 , 124139.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , D. W. J. Thompson, , and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17 , 25842596.

    • Search Google Scholar
    • Export Citation
  • Ling, R. F., 1973: A computer-generated aid for cluster analysis. Commun. ACM, 16 , 355361.

  • Matthewman, N. J., , J. G. Esler, , A. J. Charlton-Perez, , and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22 , 15661585.

    • Search Google Scholar
    • Export Citation
  • McInturff, R. M., 1978: Stratospheric warmings: Synoptic, dynamic and general-circulation aspects. NASA Ref. Publ. 1017, 50 pp.

  • Melander, M. V., , N. J. Zabusky, , and A. S. Styczek, 1986: A moment model for vortex interactions of the two-dimensional Euler equations. I: Computational validation of a Hamiltonian elliptical representation. J. Fluid Mech., 167 , 95115.

    • Search Google Scholar
    • Export Citation
  • Mercimek, M., , K. Gulez, , and T. V. Mumcu, 2005: Real object recognition using moment invariants. Sadhana, 30 , 765775.

  • Minnotte, M. C., , and R. W. West, 1999: The data image: A tool for exploring high dimensional data sets. Proc. ASA Section on Stat. Graphics, Dallas, TX, American Statistical Association, 25–33.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., , L. G. Gray, , and A. J. Charlton-Perez, 2011: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Mojena, R., 1977: Hierarchical grouping methods and stopping rules: An evaluation. Comput. J., 20 , 359363.

  • Mukougawa, H., , and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for the 1998/99 winter. Mon. Wea. Rev., 132 , 17641776.

    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., , H. Sakai, , and T. Hirooka, 2005: High sensitivity to the initial condition for the prediction of stratospheric sudden warming. Geophys. Res. Lett., 32 , L17806. doi:10.1029/2005GL022909.

    • Search Google Scholar
    • Export Citation
  • Nash, E. R., , P. A. Newman, , J. E. Rosenfield, , and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101 , 94719478.

    • Search Google Scholar
    • Export Citation
  • O’Neill, A., 2003: Middle atmosphere: Stratospheric sudden warmings. Encyclopedia of Atmospheric Science, J. R. Holton and J. A. Pyle, Eds., Academic Press, 1342–1353.

    • Search Google Scholar
    • Export Citation
  • Pezzulli, S., , D. B. Stephenson, , and A. Hannachi, 2005: The variability of seasonality. J. Climate, 18 , 7188.

  • Reichler, T., , P. J. Kushner, , and L. M. Polvani, 2005: The coupled stratosphere–troposphere response to impulsive forcing from the troposphere. J. Atmos. Sci., 62 , 33373352.

    • Search Google Scholar
    • Export Citation
  • Rizon, M., and Coauthors 2006: Object detection using geometric invariant moment. Amer. J. Appl. Sci., 2 , 18761878.

  • Rousseeuw, P. J., 1987: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20 , 5365.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2008: Is there a statistical connection between stratospheric sudden warmings and tropospheric blocking events? J. Atmos. Sci., 65 , 14421454.

    • Search Google Scholar
    • Export Citation
  • Takens, F., 1981: Detecting strange attractors in turbulence. Lect. Notes Math., 898 , 366381.

  • Tibshirani, R., , G. Walther, , and T. Hastie, 2001: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc., 63B , 411423.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., , and R. S. Lindzen, 1979: A theory of stationary long waves. Part I: A simple theory of blocking. Mon. Wea. Rev., 107 , 714734.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Waugh, D. W., 1997: Elliptical diagnostics of stratospheric polar vortices. Quart. J. Roy. Meteor. Soc., 123 , 17251748.

  • Waugh, D. W., , and W. Randel, 1999: Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci., 56 , 15941613.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., , A. Charlton-Perez, , S. Ineson, , A. Marshall, , and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115 , D06108. doi:10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 8
PDF Downloads 15 15 1

On the Use of Geometric Moments to Examine the Continuum of Sudden Stratospheric Warmings

View More View Less
  • 1 Department of Meteorology, Reading University, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.

Corresponding author address: Dr. Abdel Hannachi, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. Email: a.hannachi@misu.su.se

Abstract

The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.

Corresponding author address: Dr. Abdel Hannachi, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. Email: a.hannachi@misu.su.se

Save