• Alonge, C. J., , K. I. Mohr, , and W. K. Tao, 2007: Numerical studies of wet versus dry soil regimes in the West African Sahel. J. Hydrometeor., 8 , 102116.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and Y. Liu, 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101 , 74997518.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55 , 26662689.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and J. H. Ball, 1995: The FIFE surface diurnal cycle climate. J. Geophys. Res., 100 , 2567925693.

  • Betts, A. K., , R. L. Desjardins, , and D. Worth, 2007: Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agric. For. Meteor., 142 , 156169.

    • Search Google Scholar
    • Export Citation
  • Brown, M. E., , and D. L. Arnold, 1998: Land–surface–atmosphere interactions associated with deep convection in Illinois. Int. J. Climatol., 18 , 16371653.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and R. Avissar, 1994: The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33 , 13231340.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., , J.-H. Yoon, , K. J. St. Croix, , and E. S. Takle, 2001: Suppressing impacts of the Amazonian deforestation by the global circulation change. Bull. Amer. Meteor. Soc., 82 , 22092216.

    • Search Google Scholar
    • Export Citation
  • Chu, P. S., , Z. P. Yu, , and S. Hastenrath, 1994: Detecting climate change concurrent with deforestation in the Amazon basin: Which way has it gone? Bull. Amer. Meteor. Soc., 75 , 579583.

    • Search Google Scholar
    • Export Citation
  • Cutrim, E., , D. W. Martin, , and R. Rabin, 1995: Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteor. Soc., 76 , 18011805.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., , and S. Zhong, 2000: A study of the effects of sub-grid-scale land use differences on atmospheric stability in prestorm environments. J. Geophys. Res., 105 , 93819392.

    • Search Google Scholar
    • Export Citation
  • Doran, J. C., , W. J. Shaw, , and J. M. Hubbe, 1995: Boundary layer characteristics over areas of inhomogeneous surface fluxes. J. Appl. Meteor., 34 , 559571.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134 , 7991.

    • Search Google Scholar
    • Export Citation
  • Frye, J. D., , and T. L. Mote, 2010: Convection initiation along soil moisture boundaries in the southern Great Plains. Mon. Wea. Rev., 138 , 11401151.

    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., , D. J. Parker, , C. M. Taylor, , C. E. Reeves, , and J. G. Murphy, 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res., 115 , D03102. doi:10.1029/2009JD012811.

    • Search Google Scholar
    • Export Citation
  • Gray, M. E. B., , J. Petch, , S. H. Derbyshire, , A. R. Brown, , A. P. Lock, , H. A. Swann, , and P. R. A. Brown, 2001: Version 2.3 of the Met Office large eddy model. Part II: Scientific documentation. Met Office, 49 pp. [Available online at http://appconv.metoffice.com/LEM/docs.html].

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., , and S. A. Margulis, 2009: On the impact of surface heterogeneity on a realistic convective boundary layer. Water Resour. Res., 45 , W04425. doi:10.1029/2008WR007175.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., , and K. J. Davis, 2008: The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer. J. Atmos. Sci., 65 , 31973213.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., , and K. J. Davis, 2009: Reply. J. Atmos. Sci., 66 , 32293232.

  • Kang, S.-L., , K. J. Davis, , and M. LeMone, 2007: Observations of the ABL structures over a heterogeneous land surface during IHOP_2002. J. Hydrometeor., 8 , 221244.

    • Search Google Scholar
    • Export Citation
  • Kawase, H., , T. Yoshikane, , M. Hara, , F. Kimura, , T. Sato, , and S. Ohsawa, 2008: Impact of extensive irrigation on the formation of cumulus clouds. Geophys. Res. Lett., 35 , L01806. doi:10.1029/2007GL032435.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Search Google Scholar
    • Export Citation
  • Kim, H. J., , Y. Noh, , and S. Raasch, 2004: Interaction between wind and temperature fields in the planetary boundary layer for a spatially heterogeneous surface heat flux. Bound.-Layer Meteor., 111 , 225246.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , J. L. Sun, , D. Vickers, , J. I. Macpherson, , J. R. Pederson, , and R. L. Desjardins, 1994: Observations of fluxes and inland breezes over a heterogeneous surface. J. Atmos. Sci., 51 , 24842499.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., , C. J. Morcrette, , K. A. Browning, , A. M. Blyth, , D. J. Parker, , U. Corsmeier, , N. Kalthoff, , and M. Kohler, 2007a: Variable cirrus shading during initiation of CSIP IOP 5. I: Effects on the initiation of convection. Quart. J. Roy. Meteor. Soc., 133 , 16431660.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., and Coauthors 2007b: Variable cirrus shading during CSIP IOP 5. II: Effects on the convective boundary layer. Quart. J. Roy. Meteor. Soc., 133 , 16611675.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., , D. J. Parker, , C. M. Grams, , B. T. Johnson, , W. M. F. Grey, , and A. N. Ross, 2008: Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys., 8 , 69796993.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., , A. Henderson-Sellers, , H. Zhang, , T. B. Durbridge, , and A. J. Pitman, 1995: Global climate sensitivity to tropical deforestation. Global Planet. Change, 10 , 97128.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C., , H. Lean, , K. Browning, , J. Nicol, , N. Roberts, , P. Clark, , A. Russell, , and A. Blyth, 2007: Combination of mesoscale and synoptic mechanisms for triggering an isolated thunderstorm: Observational case study of CSIP IOP 1. Mon. Wea. Rev., 135 , 37283749.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., , R. F. Adler, , L. M. Xu, , and J. Surratt, 2004: The impact of Amazonian deforestation on dry season rainfall. J. Climate, 17 , 13061319.

    • Search Google Scholar
    • Export Citation
  • Ookouchi, Y., , M. Segal, , R. C. Kessler, , and R. A. Pielke, 1984: Evaluation of soil moisture effects on the generation and modification of mesoscale circulations. Mon. Wea. Rev., 112 , 22812292.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 2002: The response of CAPE and CIN to tropospheric thermal variations. Quart. J. Roy. Meteor. Soc., 128 , 119130.

  • Patton, E. G., , P. P. Sullivan, , and C. H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62 , 20782097.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., , P. N. Blossey, , and C. S. Bretherton, 2008: Differences in the lower troposphere in two- and three-dimensional cloud-resolving model simulations of deep convection. Quart. J. Roy. Meteor. Soc., 134 , 19411946.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39 , 151177.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , J. Adegoke, , A. Beltran-Przekurat, , C. A. Hiemstra, , J. Lin, , U. S. Nair, , D. Niyogi, , and T. E. Nobis, 2007: An overview of regional land-use and land-cover impacts on rainfall. Tellus, 59B , 587601.

    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., , A. Karipot, , and M. W. Binford, 2007: Characteristics of secondary circulations over an inhomogeneous surface simulated with large-eddy simulation. Bound.-Layer Meteor., 123 , 239261.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., , and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101 , 3159.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., , S. Stadler, , P. J. Wetzel, , D. J. Stensrud, , and M. Gregory, 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71 , 272280.

    • Search Google Scholar
    • Export Citation
  • Reible, D. D., , J. E. Simpson, , and P. F. Linden, 1993: The sea breeze and gravity-current frontogenesis. Quart. J. Roy. Meteor. Soc., 119 , 116.

    • Search Google Scholar
    • Export Citation
  • Roy, S. B., 2009: Mesoscale vegetation–atmosphere feedbacks in Amazonia. J. Geophys. Res., 114 , D20111. doi:10.1029/2009JD012001.

  • Roy, S. B., , and R. Avissar, 2002: Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res., 107 , 8037. doi:10.1029/2000JD000266.

    • Search Google Scholar
    • Export Citation
  • Segal, M., , and R. W. Arritt, 1992: Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73 , 15931604.

    • Search Google Scholar
    • Export Citation
  • Segal, M., , R. Avissar, , M. C. McCumber, , and R. A. Pielke, 1988: Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci., 45 , 22682293.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., , M. M.-K. Wai, , H. J. Cooper, , and M. T. Rubes, 1994: Linking boundary-layer circulations and surface processes during FIFE 89. Part I: Observational analysis. J. Atmos. Sci., 51 , 14971529.

    • Search Google Scholar
    • Export Citation
  • Souza, E. P., , N. O. Rennó, , and M. A. F. Silva Dias, 2000: Convective circulations induced by surface heterogeneities. J. Atmos. Sci., 57 , 29152922.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , R. J. Ellis, , D. J. Parker, , R. R. Burton, , and C. D. Thorncroft, 2003: Linking boundary-layer variability with convection: A case-study from JET2000. Quart. J. Roy. Meteor. Soc., 129 , 22332253.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , D. J. Parker, , and P. P. Harris, 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett., 34 , L15801. doi:10.1029/2007GL030572.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , P. P. Harris, , and D. J. Parker, 2010: Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case-study from the AMMA special observing period. Quart. J. Roy. Meteor. Soc., 136 , 456470.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , F. Chen, , and K. W. Manning, 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132 , 29542976.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , and H. V. Murphey, 2010: Analysis of convergence boundaries observed during IHOP_2002. Mon. Wea. Rev., 138 , 27372760.

    • Search Google Scholar
    • Export Citation
  • Wang, J. F., , R. L. Bras, , and E. A. B. Eltahir, 2000: The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J. Hydrometeor., 1 , 267286.

    • Search Google Scholar
    • Export Citation
  • Wang, J. F., and Coauthors 2009: Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106 , 36703674.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004a: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. southern Great Plains during summer. Part I: Case studies. J. Hydrometeor., 5 , 12231246.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2004b: Coupling between large-scale atmospheric processes and mesoscale land–atmosphere interactions in the U.S. southern Great Plains during summer. Part II: Mean impacts of the mesoscale. J. Hydrometeor., 5 , 12471258.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2009: Comments on “The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer”. J. Atmos. Sci., 66 , 32263228.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., , and R. Avissar, 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc., 82 , 269281.

    • Search Google Scholar
    • Export Citation
  • Werth, D., , and R. Avissar, 2002: The local and global effects of Amazon deforestation. J. Geophys. Res., 107 , 8087. doi:10.1029/2001JD000717.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114 , 25162536.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and Coauthors 2002: An intercomparison of cloud-resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data. Quart. J. Roy. Meteor. Soc., 128 , 593624.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , A. Henderson-Sellers, , and K. McGuffie, 2001: The compounding effects of tropical deforestation and greenhouse warming on climate. Climatic Change, 49 , 309338.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67 , 29432959.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., , and J. C. Doran, 1998: An evaluation of the importance of surface flux variability on GCM-scale boundary-layer characteristics using realistic meteorological and surface forcing. J. Climate, 11 , 27742788.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., , and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13 , 11061131.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 13
PDF Downloads 63 63 6

What is the Mechanism for the Modification of Convective Cloud Distributions by Land Surface–Induced Flows?

View More View Less
  • 1 Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom
  • | 2 National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom
© Get Permissions
Restricted access

Abstract

The aim of this study is to determine the mechanism that modulates the initiation of convection within convergence zones caused by land surface–induced mesoscale flows. An idealized modeling approach linked quantitatively to observations of vegetation breezes over tropical Benin was used. A large-eddy model was used with a prescribed land surface describing heterogeneities between crop and forest over which vegetation breezes have been observed. The total surface fluxes were constant but the Bowen ratio varied with vegetation type. The heterogeneous land surface created temperature differences consistent with observations, which in turn forced mesoscale winds and convection at the convergence zones over the crop boundaries. At these convergence zones optimum conditions for the initiation of convection were found in the afternoon; the equivalent potential temperature was higher in the convergence zones than over anywhere else in the domain, due to reduced entrainment, and the mesoscale convergence produced a persistent increase in vertical wind velocities of up to 0.5 m s−1 over a 5–10-km region. The relative importance of these two mechanisms depended on the synoptic conditions. When convective inhibition was weak, the thermodynamic conditions at the convergence zone were most important, as the triggering of convection was easily accomplished. However, when the thermodynamic profile inhibited convection, the mesoscale updrafts became essential for triggering in order to break through the inhibiting barrier. At the same time, subsidence over the forest produced a warm capping layer over the boundary layer top that suppressed convection over the forest throughout the afternoon.

Corresponding author address: Luis Garcia-Carreras, School of Earth and Environment, University of Leeds, Leeds LS29JT, United Kingdom. Email: eelgc@leeds.ac.uk

Abstract

The aim of this study is to determine the mechanism that modulates the initiation of convection within convergence zones caused by land surface–induced mesoscale flows. An idealized modeling approach linked quantitatively to observations of vegetation breezes over tropical Benin was used. A large-eddy model was used with a prescribed land surface describing heterogeneities between crop and forest over which vegetation breezes have been observed. The total surface fluxes were constant but the Bowen ratio varied with vegetation type. The heterogeneous land surface created temperature differences consistent with observations, which in turn forced mesoscale winds and convection at the convergence zones over the crop boundaries. At these convergence zones optimum conditions for the initiation of convection were found in the afternoon; the equivalent potential temperature was higher in the convergence zones than over anywhere else in the domain, due to reduced entrainment, and the mesoscale convergence produced a persistent increase in vertical wind velocities of up to 0.5 m s−1 over a 5–10-km region. The relative importance of these two mechanisms depended on the synoptic conditions. When convective inhibition was weak, the thermodynamic conditions at the convergence zone were most important, as the triggering of convection was easily accomplished. However, when the thermodynamic profile inhibited convection, the mesoscale updrafts became essential for triggering in order to break through the inhibiting barrier. At the same time, subsidence over the forest produced a warm capping layer over the boundary layer top that suppressed convection over the forest throughout the afternoon.

Corresponding author address: Luis Garcia-Carreras, School of Earth and Environment, University of Leeds, Leeds LS29JT, United Kingdom. Email: eelgc@leeds.ac.uk

Save