• Alexander, M. J., and Coauthors 2008: Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res., 113 , D15S18. doi:10.1029/2007JD008807.

    • Search Google Scholar
    • Export Citation
  • Andreassen, O., , C. E. Wasberg, , D. C. Fritts, , and J. R. Isler, 1994: Gravity wave breaking in two and three dimensions 1. Model description and comparison to two-dimensional evolutions. J. Geophys. Res., 99 , 80958108.

    • Search Google Scholar
    • Export Citation
  • Andreassen, O., , P. O. Hvidsten, , D. C. Fritts, , and S. Arendt, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 1. Initial instability evolution. J. Fluid Mech., 367 , 2746.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46 , 21092134.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , P. A. Newman, , B. L. Gary, , and K. R. Chan, 1994: An algorithm for forecasting mountain wave–related turbulence in the stratosphere. Wea. Forecasting, 9 , 241253.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., , and W. R. Peltier, 1977: On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci., 34 , 17151730.

    • Search Google Scholar
    • Export Citation
  • de la Torre, A., , T. Schmidt, , and J. Wickert, 2006: A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophys. Res. Lett., 33 , L24809. doi:10.1029/2006GL027696.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., , and J. A. Whiteway, 2005: The spectrum of waves and turbulence at the tropopause. Geophys. Res. Lett., 32 , L07801. doi:10.1029/2004GL021189.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1984: Inertia–gravity waves in the stratosphere. J. Atmos. Sci., 41 , 33963404.

  • Durran, D., , and J. Klemp, 1987: Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning layers. J. Atmos. Sci., 44 , 34023412.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286 , 15341537. doi:10.1126/science.286.5444.1534.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., , and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22 , 123.

  • Farge, M., 1992: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., 24 , 395457.

  • Fleming, E. L., , S. Chanda, , M. R. Shoeberl, , and J. J. Barnett, 1988: Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km. NASA Tech. Memo. 100697, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Franke, P. M., , and W. A. Robinson, 1999: Nonlinear behavior in the propagation of atmospheric gravity waves. J. Atmos. Sci., 56 , 30103027.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20 , 12471277.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 , 1003. doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , S. Arendt, , and O. Andreassen, 1998: Vorticity dynamics in a breaking internal gravity wave. Part 2. Vortex interactions and transition to turbulence. J. Fluid Mech., 367 , 4765.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , S. L. Vadas, , K. Wan, , and J. S. Werne, 2006: Mean and variable forcing of the middle atmosphere by gravity waves. J. Atmos. Sol.-Terr. Phys., 68 , 247265. doi:10.1016/j.jastp.2005.04.010.

    • Search Google Scholar
    • Export Citation
  • Georgelin, M., , and F. Lott, 2001: On the transfer of momentum by trapped lee waves: Case of the IOP 3 of PYREX. J. Atmos. Sci., 58 , 35633580.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1988: Generation of turbulence by atmospheric gravity waves. J. Atmos. Sci., 45 , 12691278.

  • Hodges, R. R., 1967: Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res., 72 , 34553458.

  • Holton, J. R., , and M. J. Alexander, 1999: Gravity waves in the mesosphere generated by tropospheric convection. Tellus, 51A , 4558.

  • Kim, Y.-J., , S. D. Eckermann, , and H.-Y. Chun, 2003: An overview of the past, present, and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598. doi:10.3137/ao.410105.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , J. Dudhia, , and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136 , 39874004.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and R. D. Sharman, 2006: Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett., 33 , L23813. doi:10.1029/2006GL027988.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and R. D. Sharman, 2008: Some influences of background flow conditions on the generation of turbulence due to gravity wave breaking above deep convection. J. Appl. Meteor. Climatol., 47 , 27772796.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., , and P. J. Kennedy, 1973: Observation of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30 , 11351152.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Lindzen, R. S., , and J. W. Barker, 1985: Instability and wave over-reflection in stably stratified shear flow. J. Fluid Mech., 151 , 189217.

    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., , P. B. Hays, , and R. G. Roble, 1999: A numerical study of gravity wave breaking and impacts on turbulence and mean state. J. Atmos. Sci., 56 , 21522177.

    • Search Google Scholar
    • Export Citation
  • Lombard, P. N., , and J. J. Riley, 1996: On the breakdown into turbulence of propagating internal waves. Dyn. Atmos. Oceans, 23 , 345355.

    • Search Google Scholar
    • Export Citation
  • Mahalov, A., , and M. Moustaoui, 2009: Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere. J. Comput. Phys., 228 , 12941311. doi:10.1016/j.jcp.2008.10.030.

    • Search Google Scholar
    • Export Citation
  • McHugh, J., 2009: Internal waves at an interface between two layers of differing stability. J. Atmos. Sci., 66 , 18451855.

  • Moeng, C.-H., , and J. C. Wyngaard, 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46 , 23112330.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., , P. K. Smolarkiewicz, , and R. R. Garcia, 1996: Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing. J. Atmos. Sci., 53 , 21862216.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of airflow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29 , 1626.

  • Satomura, T., , and K. Sato, 1999: Secondary generation of gravity waves associated with the breaking of mountain waves. J. Atmos. Sci., 56 , 38473858.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., 1985: The penetration of mountain waves into the middle atmosphere. J. Atmos. Sci., 42 , 28562864.

  • Scinocca, J. F., , and W. R. Peltier, 1989: Pulsating downslope windstorms. J. Atmos. Sci., 46 , 28852914.

  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227 , 34653485.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42 , 25972603.

  • Smith, R. B., , S. Skubis, , J. D. Doyle, , A. S. Broad, , C. Kiemle, , and H. Volkert, 2002: Mountain waves over Mont Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci., 59 , 20732092.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , J. D. Doyle, , Q. Jiang, , and S. A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc., 133 , 917936.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , B. K. Woods, , J. Jensen, , W. A. Cooper, , J. D. Doyle, , Q. Jiang, , and V. Grubišić, 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65 , 25432562.

    • Search Google Scholar
    • Export Citation
  • Smith, S. A., , and A. S. Broad, 2003: Horizontal and temporal variability of mountain waves over Mt. Blanc. Quart. J. Roy. Meteor. Soc., 129 , 21952216.

    • Search Google Scholar
    • Export Citation
  • Snively, J. B., , and V. P. Pasko, 2003: Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophys. Res. Lett., 30 , 2254. doi:10.1029/2003GL018436.

    • Search Google Scholar
    • Export Citation
  • Sonmor, L. J., , and G. P. Klaassen, 1997: Toward a unified theory of gravity wave stability. J. Atmos. Sci., 54 , 26552680.

  • Torrence, C., , and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79 , 6178.

  • Vadas, S. L., , D. C. Fritts, , and M. J. Alexander, 2003: Mechanism for the generation of secondary waves in wave breaking regions. J. Atmos. Sci., 60 , 194214.

    • Search Google Scholar
    • Export Citation
  • Walterscheid, R. L., , and G. Schubert, 1990: Nonlinear evolution of an upward propagating gravity wave: Overturning, convection, transience, and turbulence. J. Atmos. Sci., 47 , 101125.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., , and J. J. Riley, 1992: Instability of internal waves near a critical level. Dyn. Atmos. Oceans, 16 , 249278.

  • Woods, B. K., , and R. B. Smith, 2010: Energy flux and wavelet diagnostics of secondary mountain waves. J. Atmos. Sci., 67 , 37213738.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 4
PDF Downloads 21 21 3

Short-Wave Signatures of Stratospheric Mountain Wave Breaking

View More View Less
  • 1 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
© Get Permissions
Restricted access

Abstract

Recent stratospheric mountain wave measurements over the Sierra Nevada indicate that downgoing secondary waves may be common or even ubiquitous in large wave events. Because of their short wavelengths, they may dominate the vertical velocity field near the tropopause, and they give a remote indicator of wave breaking farther aloft. Using a 2D numerical model, the authors have simulated the secondary wave generation process with qualitative agreement in the wave location, phase speed, wavelength (i.e., 10–20 km), and amplitude. A key to the analysis was the use of Morlet wavelet cross spectra on both the observational and simulated fields.

Several characteristics of the simulated secondary waves were unexpected. First, the secondary waves are generated with good efficiency, approaching 20% of the primary upgoing wave momentum flux. Second, whereas most of the secondary waves are downward, the shorter components reflect upward from the tropopause, giving a kind of lee wave trapping in the lower stratosphere. Long waves are also observed propagating upward and downward away from the wave breaking region. Third, the phase speed of the secondary waves is nearly zero so the Eliassen–Palm relationship between momentum and energy flux is satisfied. While the 2D results are robust to grid size and subgrid parameterization, an extension of the modeling to three dimensions is disappointing. The secondary waves’ amplitudes in the 3D runs are much smaller than observed.

Corresponding author address: Bryan K. Woods, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421. Email: bwoods@aer.com

Abstract

Recent stratospheric mountain wave measurements over the Sierra Nevada indicate that downgoing secondary waves may be common or even ubiquitous in large wave events. Because of their short wavelengths, they may dominate the vertical velocity field near the tropopause, and they give a remote indicator of wave breaking farther aloft. Using a 2D numerical model, the authors have simulated the secondary wave generation process with qualitative agreement in the wave location, phase speed, wavelength (i.e., 10–20 km), and amplitude. A key to the analysis was the use of Morlet wavelet cross spectra on both the observational and simulated fields.

Several characteristics of the simulated secondary waves were unexpected. First, the secondary waves are generated with good efficiency, approaching 20% of the primary upgoing wave momentum flux. Second, whereas most of the secondary waves are downward, the shorter components reflect upward from the tropopause, giving a kind of lee wave trapping in the lower stratosphere. Long waves are also observed propagating upward and downward away from the wave breaking region. Third, the phase speed of the secondary waves is nearly zero so the Eliassen–Palm relationship between momentum and energy flux is satisfied. While the 2D results are robust to grid size and subgrid parameterization, an extension of the modeling to three dimensions is disappointing. The secondary waves’ amplitudes in the 3D runs are much smaller than observed.

Corresponding author address: Bryan K. Woods, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421. Email: bwoods@aer.com

Save