• Barnes, G. M., , and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138 , 14461458.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., , R. W. Burpee, , and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53 , 18871909.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., 1984: Distribution of particles types above 6.0 km in two Atlantic hurricanes. Preprints, 16th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 537–541.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43 , 802822.

  • Black, R. A., , and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56 , 20042028.

  • Black, R. A., , J. Hallett, , and C. P. R. Saunders, 1993: Aircraft studies of precipitation and electrification in hurricanes. Preprints, 17th Conf. on Severe Local Storms/Conf. on Atmospheric Electricity, St. Louis, MO, Amer. Meteor. Soc., J20–J25.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , H. B. Bluestein, , and M. L. Black, 1994: Unusually strong vertical motions in a Caribbean hurricane. Mon. Wea. Rev., 122 , 27222739.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and L. Wu, 2007: A numerical study of Hurricane Erin (2001). Part II: Shear and the organization of eyewall vertical motion. Mon. Wea. Rev., 135 , 11791194.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , M. T. Montgomery, , and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63 , 1942.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127 , 103123.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Wea. Rev., 136 , 19902005.

    • Search Google Scholar
    • Export Citation
  • Demetriades, N. W. S., , and R. L. Holle, 2005: Long-range lightning applications for hurricane intensity. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., P2.8. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_84498.htm].

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005a: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133 , 188208.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005b: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133 , 209227.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , M. S. Gilmore, , E. R. Mansell, , L. J. Wicker, , and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134 , 31493172.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , L. M. Leslie, , E. R. Mansell, , J. M. Straka, , D. R. MacGorman, , and C. Ziegler, 2007: A high-resolution simulation of microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98 , 1333. doi:10.1007/s00703-006-0237-0.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , R. Rogers, , F. Marks, , and D. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF-ARW model. Mon. Wea. Rev., 137 , 37173743.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., , X.-M. Shao, , J. M. Reisner, , J. D. Harlin, , and T. Hamlin, 2011: Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of Hurricanes Rita, Katrina, and Charley. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., , and G. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138 , 688704.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., , G. M. Heymsfield, , and F. J. Turk, 2010: Multi-scale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67 , 633654.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., , J. B. Halverson, , J. Simpson, , L. Tian, , and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40 , 13101330.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , F. D. Marks, , and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49 , 943963.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., , R. Holzworth, , J. Harlin, , R. Dowden, , and E. Lay, 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Oceanic Technol., 23 , 10821092.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., , C. P. R. Saunders, , and J. Hallet, 1983: Laboratory studies of the charging of soft hail during ice crystals interactions. Quart. J. Roy. Meteor. Soc., 109 , 609630.

    • Search Google Scholar
    • Export Citation
  • Kabèche, A., , and J. Testud, 1995: Stereoradar meteorology: A new unified approach to process data from airborne or ground-based meteorological radars. J. Atmos. Oceanic Technol., 12 , 783799.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18 , 10931108.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., , J. Stout, , and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclone eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31 , L24112. doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., , C. L. Ziegler, , E. R. Mansell, , D. R. MacGorman, , and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134 , 27342757.

    • Search Google Scholar
    • Export Citation
  • Lay, E. H., , A. R. Jacobson, , R. H. Holzworth, , C. J. Rodger, , and R. L. Dowden, 2007: Local time variation in land/ocean lightning count rates as measured by the World Wide Lightning Location Network. J. Geophys. Res., 112 , D13111. doi:10.1029/2006JD007944.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1979: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng., 19 , 5998.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., , and J. Drummond, 1995: Why you should not use “hybrid,” “power-law” or related exponential schemes for convective modeling—There are better alternatives. Int. J. Numer. Methods Fluids, 20 , 421442.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., , and C. S. Keen, 1994: Observations of lightning in convective supercells within tropical storms and hurricanes. Mon. Wea. Rev., 122 , 18971916.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., , M. G. Venne, , P. G. Black, , and R. C. Gentry, 1989: Hurricane lightning: A new diagnostic tool for tropical storm forecasting? Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 113–114.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., , D. R. MacGorman, , C. L. Ziegler, , and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107 , 4075. doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., , D. R. MacGorman, , C. L. Ziegler, , and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell storm. J. Geophys. Res., 110 , D12101. doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113 , 909930.

  • Marks, F. D., , D. Atlas, , and P. T. Wills, 1993: Probability-matched reflectivity–rainfall relations for a hurricane from aircraft observations. J. Appl. Meteor., 32 , 11341141.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. K. Moore, , V. P. Idone, , R. W. Henderson, , and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res., 99 , 1666516676.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Moore, , and V. Idone, 1999: Convective structure of hurricanes as revealed by lightning locations. Mon. Wea. Rev., 127 , 520534.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , Y. Moon, , and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64 , 33773405.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , R. C. Cifelli, , S. A. Rutledge, , B. S. Ferrier, , and B. F. Smull, 1999: Shipborne dual-Doppler operations and observations during TOGA COARE. Bull. Amer. Meteor. Soc., 80 , 8197.

    • Search Google Scholar
    • Export Citation
  • Price, C., , M. Asfur, , and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2 , 329332. doi:10.1038/NGEO477.

    • Search Google Scholar
    • Export Citation
  • Protat, A., , Y. Lemaitre, , D. Bouniol, , and R. A. Black, 2000: Microphysical observations during FASTEX from airborne Doppler radar and in-situ measurements. Phys. Chem. Earth B. Hydrol. Oceans Atmos., 25 , (10–12). 10971102.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137 , 603631.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., , and C. A. Jeffery, 2009: A smooth cloud model. Mon. Wea. Rev., 137 , 18251843.

  • Rodgers, E. B., , W. S. Olson, , V. M. Karyampudi, , and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126 , 12291247.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., , J. Weinman, , H. Pierce, , and W. Olson, 2000: Tropical cyclone lightning distribution and its relationship to convection and intensity change. Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, Amer. Meteor. Soc., 537–541.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., , M. L. Black, , S. S. Chen, , and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64 , 18111834.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., , and L. S. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal-graupel collisions. J. Geophys. Res., 103 , 1394913956.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., , W. D. Keith, , and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96 , 1100711017.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56 , 11971223.

    • Search Google Scholar
    • Export Citation
  • Shao, X. M., and Coauthors 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86 , 398. doi:10.1029/2005EO420004.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , J. B. Halverson, , B. S. Ferrier, , W. A. Petersen, , R. H. Simpson, , R. Blakeslee, , and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67 , 1535.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., and Coauthors 1999: A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res., 104 , 41894212.

    • Search Google Scholar
    • Export Citation
  • Solorzano, N. N., , J. N. Thomas, , and R. H. Holzworth, 2008: Global studies of tropical cyclones using the World Wide Lightning Location Network. Preprints, Third Conf. on Meteorological Applications of Lightning Data, New Orleans, LA, Amer. Meteor. Soc., 1.4. [Available online at http://ams.confex.com/ams/88Annual/techprogram/paper_134367.htm].

    • Search Google Scholar
    • Export Citation
  • Squires, K., , and S. Businger, 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136 , 17061726.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., , E. B. Rodgers, , and R. C. Gentry, 1986: The relationship between satellite measured convection burst and tropical cyclone intensification. Mon. Wea. Rev., 114 , 15391546.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35 , 15361548.

  • Thompson, G., , R. M. Rasmussen, , and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132 , 519542.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66 , 19441961.

  • Ziegler, C. L., , D. R. MacGorman, , J. E. Dye, , and P. S. Ray, 1991: A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96 , 1283312855.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 11
PDF Downloads 35 35 5

High-Resolution Simulation of the Electrification and Lightning of Hurricane Rita during the Period of Rapid Intensification

View More View Less
  • 1 Earth and Environmental Sciences Division/Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 2 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
© Get Permissions
Restricted access

Abstract

In this paper, a high-resolution simulation establishing relationships between lightning and eyewall convection during the rapid intensification phase of Rita will be highlighted. The simulation is an attempt to relate simulated lightning activity within strong convective events (CEs) found within the eyewall and general storm properties for a case from which high-fidelity lightning observations are available. Specifically, the analysis focuses on two electrically active eyewall CEs that had properties similar to events observed by the Los Alamos Sferic Array. The numerically simulated CEs were characterized by updraft speeds exceeding 10 m s−1, a relatively more frequent flash rate confined in a layer between 10 and 14 km, and a propagation speed that was about 10 m s−1 less than of the local azimuthal flow in the eyewall. Within an hour of the first CE, the simulated minimum surface pressure dropped by approximately 5 mb. Concurrent with the pulse of vertical motions was a large uptake in lightning activity. This modeled relationship between enhanced vertical motions, a noticeable pressure drop, and heightened lightning activity suggests the utility of using lightning to remotely diagnose future changes in intensity of some tropical cyclones. Furthermore, given that the model can relate lightning activity to latent heat release, this functional relationship, once validated against a derived field produced by dual-Doppler radar data, could be used in the future to initialize eyewall convection via the introduction of latent heat and/or water vapor into a hurricane model.

Corresponding author address: Alexandre O. Fierro, Cooperative Institute for Mesoscale Meteorological Studies, National Weather Center, Suite 2100, 120 David L. Boren Blvd., Norman, OK 73072. Email: afierro@ou.edu

Abstract

In this paper, a high-resolution simulation establishing relationships between lightning and eyewall convection during the rapid intensification phase of Rita will be highlighted. The simulation is an attempt to relate simulated lightning activity within strong convective events (CEs) found within the eyewall and general storm properties for a case from which high-fidelity lightning observations are available. Specifically, the analysis focuses on two electrically active eyewall CEs that had properties similar to events observed by the Los Alamos Sferic Array. The numerically simulated CEs were characterized by updraft speeds exceeding 10 m s−1, a relatively more frequent flash rate confined in a layer between 10 and 14 km, and a propagation speed that was about 10 m s−1 less than of the local azimuthal flow in the eyewall. Within an hour of the first CE, the simulated minimum surface pressure dropped by approximately 5 mb. Concurrent with the pulse of vertical motions was a large uptake in lightning activity. This modeled relationship between enhanced vertical motions, a noticeable pressure drop, and heightened lightning activity suggests the utility of using lightning to remotely diagnose future changes in intensity of some tropical cyclones. Furthermore, given that the model can relate lightning activity to latent heat release, this functional relationship, once validated against a derived field produced by dual-Doppler radar data, could be used in the future to initialize eyewall convection via the introduction of latent heat and/or water vapor into a hurricane model.

Corresponding author address: Alexandre O. Fierro, Cooperative Institute for Mesoscale Meteorological Studies, National Weather Center, Suite 2100, 120 David L. Boren Blvd., Norman, OK 73072. Email: afierro@ou.edu

Save