• Adlerman, E. J., , and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691.

    • Search Google Scholar
    • Export Citation
  • Arnott, N. R., , Y. P. Richardson, , J. M. Wurman, , and E. M. Rasmussen, 2006: Relationship between a weakening cold front, misocyclones, and cloud development on 10 June 2002 during IHOP. Mon. Wea. Rev., 134, 311335.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., , R. M. Wakimoto, , and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 516 pp.

  • Betchov, R., , and A. Szewczyk, 1963: Stability of a shear layer between parallel streams. Phys. Fluids, 6, 13911396.

  • Bishop, C. H., , and A. J. Thorpe, 1994: Frontal wave stability during moist deformation frontogenesis. Part I: Linear wave dynamics. J. Atmos. Sci., 51, 852873.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Quart. J. Roy. Meteor. Soc., 92, 335345.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., , and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369389.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and J. M. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , R. Rotunno, , and J. M. Fritsch, 2007: Roll circulations in the convective region of a simulated squall line. J. Atmos. Sci., 64, 12491266.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I: Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258279.

  • Corcos, G. M., , and F. S. Sherman, 1984: The mixing layer: Deterministic models of a turbulent flow. Part 1: Introduction and the two-dimensional flow. J. Fluid Mech., 139, 2965.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., , and W. H. Reid, 1981: Hydrodynamic Stability. Cambridge University Press, 525 pp.

  • Durran, D. R., , and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158.

  • Fovell, R. G., 1991: Influence of Coriolis force on two-dimensional model storms. Mon. Wea. Rev., 119, 606630.

  • Fovell, R. G., , and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., , D. E. Kingsmill, , and C. R. Young, 2005: Misocyclone characteristics along Florida gust fronts during CaPE. Mon. Wea. Rev., 133, 33453367.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., , D. E. Kingsmill, , C. Flamant, , H. V. Murphey, , and R. M. Wakimoto, 2008: Kinematic and moisture characteristics of a nonprecipitating cold front observed during IHOP. Part II: Alongfront structures. Mon. Wea. Rev., 136, 37963821.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., , and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 28102828.

  • Hane, C. R., 1973: The squall line thunderstorm: Numerical experimentation. J. Atmos. Sci., 30, 16721690.

  • Heifetz, B., , C. H. Bishop, , and P. Alpert, 1999: Counter-propagating Rossby waves in the barotropic Rayleigh model of shear instability. Quart. J. Roy. Meteor. Soc., 125, 28352853.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , and K. R. Biswas, 1979: The cellular structure of narrow cold-frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 723727.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , and P. O. G. Persson, 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: The substructure of narrow cold-frontal rainbands. J. Atmos. Sci., 39, 280295.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , P. V. Hobbs, , K. R. Biswas, , and W. M. Davis, 1976: Mesoscale rainbands in extratropical cyclones. Mon. Wea. Rev., 104, 868878.

    • Search Google Scholar
    • Export Citation
  • Iga, S., , H. Tomita, , M. Satoh, , and K. Goto, 2007: Mountain-wave-like spurious waves associated with simulated cold fronts due to inconsistencies between horizontal and vertical resolutions. Mon. Wea. Rev., 135, 26292641.

    • Search Google Scholar
    • Export Citation
  • James, P. K., , and K. A. Browning, 1979: Mesoscale structure of line convection at surface cold fronts. Quart. J. Roy. Meteor. Soc., 105, 371382.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , Z. Pu, , P. O. G. Persson, , and W.-K. Tao, 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 27052729.

    • Search Google Scholar
    • Export Citation
  • Kawashima, M., 2007: Numerical study of precipitation core-gap structure along cold fronts. J. Atmos. Sci., 64, 23552377.

  • Kirshbaum, D. J., , G. H. Bryan, , R. Rotunno, , and D. R. Durran, 2007: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and R. B. Wilhelmson, 1997a: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclones circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and R. B. Wilhelmson, 1997b: The numerical simulation of non-supercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci., 54, 23872415.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and R. B. Wilhelmson, 2000: The numerical simulation of non-supercell tornadogenesis. Part III: Parameter tests investigating the role of CAPE, vortex sheet strength, and boundary layer vertical shear. J. Atmos. Sci., 57, 22462261.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 168172.

  • Lin, S. J., , and G. M. Corcos, 1984: The mixing layer: Deterministic models of a turbulent flow. Part 3: The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech., 141, 139178.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., , and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117, 25752583.

  • Marquis, J. N., , Y. P. Richardson, , and J. M. Wurman, 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 17491768.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., 1980: Mesoscale organization of cloud processes in extratropical cyclones. Ph.D. thesis, University of Washington, 361 pp. [Available from University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI 48106.]

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 1985: The organization of convection in narrow cold-frontal rainbands. J. Atmos. Sci., 42, 17771791.

  • Murphey, H. V., , R. M. Wakimoto, , C. Flamant, , and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430.

    • Search Google Scholar
    • Export Citation
  • Neu, J. C., 1984: The dynamics of stretched vortices. J. Fluid Mech., 143, 253276.

  • Parsons, D. B., 1992: An explanation for intense frontal updraft and narrow cold-frontal rainbands. J. Atmos. Sci., 49, 18101825.

  • Parsons, D. B., , and P. V. Hobbs, 1983a: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: Formation, development, interaction and dissipation of rainbands. J. Atmos. Sci., 40, 559579.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., , and P. V. Hobbs, 1983b: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XI: Comparisons between observational and theoretical aspects of rainbands. J. Atmos. Sci., 40, 23772398.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., , C. G. Mohr, , and T. Gal-Chen, 1987: A severe frontal rainband. Part III: Derived thermodynamic structure. J. Atmos. Sci., 44, 16151631.

    • Search Google Scholar
    • Export Citation
  • Pecnick, M. J., , and D. Keyser, 1989: The effect of spatial resolution on the simulation of upper-tropospheric frontogenesis using a sigma-coordinate primitive-equation model. Meteor. Atmos. Phys., 40, 137149.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , and T. T. Warner, 1991: Model generation of spurious gravity waves due to inconsistency of the vertical and horizontal resolution. Mon. Wea. Rev., 119, 917935.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., , and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Smart, D. J., , and K. A. Browning, 2009: Morphology and evolution of cold-frontal misocyclones. Quart. J. Roy. Meteor. Soc., 135, 381393.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , W. C. Skamarock, , and R. Rotunno, 1993: Frontal dynamics near and following frontal collapse. J. Atmos. Sci., 50, 31943212.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , M. J. Miller, , and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear. A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , and B. L. Bosart, 2000: Airborne radar observations of a cold front during FASTEX. Mon. Wea. Rev., 128, 24472470.

  • Wakimoto, R. M., , and H. V. Murphey, 2009: Analysis of a dryline during IHOP: Implications for convection initiation. Mon. Wea. Rev., 137, 912936.

    • Search Google Scholar
    • Export Citation
  • Wang, P. Y., , D. B. Parsons, , and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VI: Wavelike rainbands associated with a cold-frontal zone. J. Atmos. Sci., 40, 543558.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., , and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , J. B. Klemp, , and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., , and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661483.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , G. B. Foote, , N. A. Crook, , J. C. Fankhauser, , C. G. Wade, , J. D. Tuttle, , C. K. Mueller, , and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 8
PDF Downloads 35 35 9

Numerical Study of Horizontal Shear Instability Waves along Narrow Cold Frontal Rainbands

View More View Less
  • 1 Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
© Get Permissions
Restricted access

Abstract

The effects of variations in low-level ambient vertical shear and horizontal shear on the alongfront variability of narrow cold frontal rainbands (NCFRs) that propagate into neutral and slightly unstable environments are investigated through a series of idealized cloud-resolving simulations.

In cases initialized with slightly unstable sounding and weak ambient cross-frontal vertical shears, core-gap structures of precipitation along NCFRs occur that are associated with wavelike disturbances that derive their kinetic energy mainly from the mean local vertical shear and buoyancy. However, over a wide range of environmental conditions, core-gap structures of precipitation occur because of the development of a horizontal shear instability (HSI) wave along the NCFRs.

The growth rate and amplitude of the HSI wave decrease significantly as the vertical shear of the ambient cross-front wind is reduced. These decreases are a consequence of the enhancement of the low-level local vertical shear immediately behind the leading edge. The strong local vertical shear acts to damp the vorticity edge wave on the cold air side of the shear zone, thereby suppressing the growth of the HSI wave through the interaction of the two vorticity edge waves. It is also noted that the initial wavelength of the HSI wave increases markedly with increasing horizontal shear. The local vertical shear around the leading edge is shown to damp long HSI waves more strongly than short waves, and the horizontal shear dependency of the wavelength is explained by the decrease in the magnitude of the vertical shear relative to that of the horizontal shear.

Corresponding author address: Dr. Masayuki Kawashima, Institute of Low Temperature Science, Hokkaido University, Sapporo 060–0819, Japan. E-mail: kawasima@lowtem.hokudai.ac.jp

Abstract

The effects of variations in low-level ambient vertical shear and horizontal shear on the alongfront variability of narrow cold frontal rainbands (NCFRs) that propagate into neutral and slightly unstable environments are investigated through a series of idealized cloud-resolving simulations.

In cases initialized with slightly unstable sounding and weak ambient cross-frontal vertical shears, core-gap structures of precipitation along NCFRs occur that are associated with wavelike disturbances that derive their kinetic energy mainly from the mean local vertical shear and buoyancy. However, over a wide range of environmental conditions, core-gap structures of precipitation occur because of the development of a horizontal shear instability (HSI) wave along the NCFRs.

The growth rate and amplitude of the HSI wave decrease significantly as the vertical shear of the ambient cross-front wind is reduced. These decreases are a consequence of the enhancement of the low-level local vertical shear immediately behind the leading edge. The strong local vertical shear acts to damp the vorticity edge wave on the cold air side of the shear zone, thereby suppressing the growth of the HSI wave through the interaction of the two vorticity edge waves. It is also noted that the initial wavelength of the HSI wave increases markedly with increasing horizontal shear. The local vertical shear around the leading edge is shown to damp long HSI waves more strongly than short waves, and the horizontal shear dependency of the wavelength is explained by the decrease in the magnitude of the vertical shear relative to that of the horizontal shear.

Corresponding author address: Dr. Masayuki Kawashima, Institute of Low Temperature Science, Hokkaido University, Sapporo 060–0819, Japan. E-mail: kawasima@lowtem.hokudai.ac.jp
Save