• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Butchart, N., , and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799802.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , and R. R. Garcia, 2009: Wave forcing of the tropical upwelling in the lower stratosphere under increasing concentrations of greenhouse gases. J. Atmos. Sci., 66, 31843196.

    • Search Google Scholar
    • Export Citation
  • Deckert, R., , and M. Dameris, 2008: Higher tropical SSTs strengthen the tropical upwelling via deep convection. Geophys. Res. Lett., 35, L10813, doi:10.1029/2008GL033719.

    • Search Google Scholar
    • Export Citation
  • de Grandpré J., , S. R. Beagley, , V. I. Fomichev, , E. Griffioen, , J. C. McConnell, , A. S. Medvedev, , and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105, 26 47526 491.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., , and D. L. Hartmann, 2005: Changes in the strength of the Brewer-Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32, L15807, doi:10.1029/2005GL022924.

    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 2831.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., , and I. M. Held, 1989: Barotropic decay of baroclinic waves in a two-layer beta-plane model. J. Atmos. Sci., 46, 34163430.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., , A. I. Jonsson, , J. de Grandpré, , S. R. Beagley, , C. McLandress, , K. Semeniuk, , and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20, 11211144.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., , W. J. Randel, , and D. E. Kinnison, 2011: On the determination of age of air trends from atmospheric trace species. J. Atmos. Sci., 68, 139154.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., 2003: Critical layers. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Curry, and J. A. Pyle, Eds., Academic Press, 582–589.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , C. J. Marks, , M. E. McIntyre, , T. G. Shepherd, , and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., , and T. G. Shepherd, 2007: O3-N2O correlations from the Atmospheric Chemistry Experiment: Revisiting a diagnostic of transport and chemistry in the stratosphere. J. Geophys. Res., 112, D19301, doi:10.1029/2006JD008281.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., , and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci., 2, 687691.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1990: On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 47, 392395.

  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., , H. Hamada, , and K. Miyazaki, 2009: Comparisons of Brewer-Dobson circulations diagnosed from reanalyses. J. Meteor. Soc. Japan, 87, 9971006.

    • Search Google Scholar
    • Export Citation
  • Li, F., , J. Austin, , and R. J. Wilson, 2008: The strength of the Brewer–Dobson circulation in a changing climate: Coupled chemistry–climate model simulations. J. Climate, 21, 4057.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., , D. Cariolle, , J.-F. Royer, , J.-F. Geleyn, , and B. Timbal, 1994: Response of the Météo-France climate model to changes in CO2 and sea surface temperature. Climate Dyn., 9, 345362.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600.

  • McLandress, C., , and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., , M. R. Schoeberl, , and J. E. Nielsen, 2007: Response of stratospheric circulation and stratosphere-troposphere exchange to changing sea surface temperatures. J. Geophys. Res., 112, D16104, doi:10.1029/2006JD008012.

    • Search Google Scholar
    • Export Citation
  • Oman, L., , D. W. Waugh, , S. Pawson, , R. S. Stolarski, , and P. A. Newman, 2009: On the influence of anthropogenic forcings on changes in the stratospheric mean age. J. Geophys. Res., 114, D03105, doi:10.1029/2008JD010378.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809.

  • Plumb, R. A., , and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and F. Wu, 2007: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res., 112, D06313, doi:10.1029/2006JD007339.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. Garcia, , and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595.

  • Rind, D., , R. Suozzo, , N. K. Balachandran, , and M. J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 climate. J. Atmos. Sci., 47, 475494.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , D. Shindell, , P. Lonergan, , and N. K. Balachandran, 1998: Climate change and the middle atmosphere. Part III: The doubled CO2 climate revisited. J. Climate, 11, 876894.

    • Search Google Scholar
    • Export Citation
  • Rind, D., , P. Lonergan, , N. K. Balachandran, , and D. Shindell, 2002: 2xCO2 and solar variability influences on the troposphere through wave-mean interaction. J. Meteor. Soc. Japan, 80, 863876.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2002: On the midlatitude thermal response to tropical warmth. Geophys. Res. Lett., 29, 1190, doi:10.1029/2001GL014158.

  • Scinocca, J. F., , and P. H. Haynes, 1998: Dynamical forcing of stratospheric planetary waves by tropospheric baroclinic eddies. J. Atmos. Sci., 55, 23612392.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Semeniuk, K., , and T. G. Shepherd, 2001: Mechanisms for tropical upwelling in the stratosphere. J. Atmos. Sci., 58, 30973115.

  • Shepherd, T. G., 2000: The middle atmosphere. J. Atmos. Sol. Terr. Phys., 62, 15871601.

  • Shepherd, T. G., 2007: Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165191.

  • Shepherd, T. G., 2008: Dynamics, stratospheric ozone, and climate change. Atmos.—Ocean, 46, 117138.

  • Sigmond, M., , P. C. Siegmund, , E. Manzini, , and H. Kelder, 2004: A simulation of the separate climate effects of middle atmospheric and tropospheric CO2 doubling. J. Climate, 17, 23522367.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J, , and S. Solomon, 2005: Recent stratospheric climate trends as evidenced in radiosonde data: Global structure and tropospheric linkages. J. Climate, 18, 47854795.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 2009: The age of stratospheric air. Nat. Geosci., 2, 1416.

  • Waugh, D. W., , and V. Eyring, 2008: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8, 56995713.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 17
PDF Downloads 69 69 15

A Robust Mechanism for Strengthening of the Brewer–Dobson Circulation in Response to Climate Change: Critical-Layer Control of Subtropical Wave Breaking

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.

Corresponding author address: Theodore G. Shepherd, Department of Physics, University of Toronto, 60 St. George St., Toronto ON M5S 1A7, Canada. E-mail: tgs@atmosp.physics.utoronto.ca

Abstract

Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.

Corresponding author address: Theodore G. Shepherd, Department of Physics, University of Toronto, 60 St. George St., Toronto ON M5S 1A7, Canada. E-mail: tgs@atmosp.physics.utoronto.ca
Save