• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry–climate models of the stratosphere. Atmos. Chem. Phys., 3, 127.

    • Search Google Scholar
    • Export Citation
  • Bolvin, D. T., , R. F. Adler, , G. J. Huffman, , E. J. Nelkin, , and J. P. Poutiainen, 2009: Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J. Appl. Meteor. Climatol., 48, 18431857.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M., 2008: NASA’s Modern Era Retrospective–Analysis for Research and Applications: Integrating earth observations. Earthzine, September 26. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

    • Search Google Scholar
    • Export Citation
  • Bronnimann, S., 2007: The impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, doi:10.1029/2006RG000199.

    • Search Google Scholar
    • Export Citation
  • Bronnimann, S., , J. Luterbacher, , J. Staehelin, , T. M. Svendby, , G. Hansen, , and T. Svenoe, 2004: Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature, 431, 971974, doi:10.1038/nature02982.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone response to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys., 9, 89358948.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , R. R. Garcia, , W. J. Randel, , and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340.

    • Search Google Scholar
    • Export Citation
  • Calvo Fernandez, N., , R. R. García, , R. García Herrera, , D. Gallego Puyol, , L. Gimeno Presa, , E. Hernandez Martín, , and P. Ribera Rodríguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946.

    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., , D. W. Martin, , M. H. Hitchman, , A. Huesman, , and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Free, M., , and D. J. Seidel, 2009: Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114, D23108, doi:10.1029/2009JD012420.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., , N. Calvo, , R. R. Garcia, , and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., , P. A. Newman, , F. Li, , L. D. Oman, , O. Morgenstern, , P. Braesicke, , and J. A. Pyle, 2010: Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models. J. Geophys. Res., 115, D07105, doi:10.1029/2009JD012788.

    • Search Google Scholar
    • Export Citation
  • Juillet-Leclerc, A., , S. Thiria, , P. Naveau, , T. Delcroix, , N. Le Bec, , D. Blamart, , and T. Corrège, 2006: SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophys. Res. Lett., 33, L17710, doi:10.1029/2006GL025950.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ekisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., , M. A. Giorgetta, , M. Esch, , L. Kornblueh, , and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., , E. R. Nash, , and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring?. J. Geophys. Res., 106 (D17), 19 99920 010.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , R. R. Garcia, , N. Calvo, , and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, doi:10.1029/2009GL039343.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , D. Kinnison, , B. A. Boville, , R. R. Garcia, , and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2010: Wave driving in the tropical lower stratosphere as simulated by WACCM. Part II: ENSO-induced changes for northern winter. J. Atmos. Sci., 67, 543555.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vera, C., , G. Silvestri, , V. Barros, , and A. Carril, 2004: Differences in El Niño response over the Southern Hemisphere. J. Climate, 17, 17411753.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Y. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , B. Y. Yim, , Y. Noh, , and B. Dewitte, 2009: Changes in mixed layer depth under climate change projections in two CGCMs. Climate Dyn., 33, 199213.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and S. T. Kim, 2010: Three evolution patterns of Central–Pacific El Niño. Geophys. Res. Lett., 37, L08706, doi:10.1029/2010GL042810.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 5
PDF Downloads 20 20 4

Response of the Antarctic Stratosphere to Two Types of El Niño Events

View More View Less
  • 1 NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 2 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • 3 Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
© Get Permissions
Restricted access

Abstract

This study is the first to identify a robust El Niño–Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Niño events between 1979 and 2009 are classified as either conventional “cold tongue” events (positive SST anomalies in the Niño-3 region) or “warm pool” events (positive SST anomalies in the Niño-4 region). The 40-yr ECMWF Re-Analysis (ERA-40), NCEP, and Modern Era Retrospective–Analysis for Research and Applications (MERRA) meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Niño events. Consistent with previous studies, cold tongue events do not impact temperatures in the Antarctic stratosphere. During warm pool El Niño events, the poleward extension and increased strength of the South Pacific convergence zone favor an enhancement of planetary wave activity during September–November. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to warm pool El Niño events; the strongest planetary wave driving events are coincident with the easterly phase of the QBO.

Corresponding author address: M. M. Hurwitz, NASA Goddard Space Flight Center, Code 613.3, Greenbelt, MD 20771. E-mail: margaret.m.hurwitz@nasa.gov

Abstract

This study is the first to identify a robust El Niño–Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Niño events between 1979 and 2009 are classified as either conventional “cold tongue” events (positive SST anomalies in the Niño-3 region) or “warm pool” events (positive SST anomalies in the Niño-4 region). The 40-yr ECMWF Re-Analysis (ERA-40), NCEP, and Modern Era Retrospective–Analysis for Research and Applications (MERRA) meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Niño events. Consistent with previous studies, cold tongue events do not impact temperatures in the Antarctic stratosphere. During warm pool El Niño events, the poleward extension and increased strength of the South Pacific convergence zone favor an enhancement of planetary wave activity during September–November. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to warm pool El Niño events; the strongest planetary wave driving events are coincident with the easterly phase of the QBO.

Corresponding author address: M. M. Hurwitz, NASA Goddard Space Flight Center, Code 613.3, Greenbelt, MD 20771. E-mail: margaret.m.hurwitz@nasa.gov
Save