Abstract
This paper introduces an idealized cloud-resolving modeling (CRM) framework for the study of midlatitude diurnal convection over land. The framework is used to study the feedbacks among soil, boundary layer, and diurnal convection. It includes a setup with explicit convection and a full set of parameterizations. Predicted variables are constantly relaxed toward prescribed atmospheric profiles and soil conditions. The relaxation is weak in the lower troposphere and upper soil to allow the development of a realistic diurnal planetary boundary layer. The model is run to its own equilibrium (30 days).
The framework is able to produce a realistic timing of the diurnal cycle of convection. It also confirms the development of deeper convection in a more unstably stratified atmosphere.
With this relaxation method, the simulated “diurnal equilibrium convection” determines the humidity profile of the lower atmosphere, and the simulation becomes insensitive to the reference humidity profile. However, if a faster relaxation time is used in the lower troposphere, the convection and rainfall become much more sensitive to the reference humidity, consistent with previous studies.