An Idealized Cloud-Resolving Framework for the Study of Midlatitude Diurnal Convection over Land

Linda Schlemmer Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Linda Schlemmer in
Current site
Google Scholar
PubMed
Close
,
Cathy Hohenegger Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Cathy Hohenegger in
Current site
Google Scholar
PubMed
Close
,
Jürg Schmidli Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Jürg Schmidli in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
, and
Christoph Schär Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper introduces an idealized cloud-resolving modeling (CRM) framework for the study of midlatitude diurnal convection over land. The framework is used to study the feedbacks among soil, boundary layer, and diurnal convection. It includes a setup with explicit convection and a full set of parameterizations. Predicted variables are constantly relaxed toward prescribed atmospheric profiles and soil conditions. The relaxation is weak in the lower troposphere and upper soil to allow the development of a realistic diurnal planetary boundary layer. The model is run to its own equilibrium (30 days).

The framework is able to produce a realistic timing of the diurnal cycle of convection. It also confirms the development of deeper convection in a more unstably stratified atmosphere.

With this relaxation method, the simulated “diurnal equilibrium convection” determines the humidity profile of the lower atmosphere, and the simulation becomes insensitive to the reference humidity profile. However, if a faster relaxation time is used in the lower troposphere, the convection and rainfall become much more sensitive to the reference humidity, consistent with previous studies.

Corresponding author address: Linda Schlemmer, Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland. E-mail: linda.schlemmer@env.ethz.ch

Abstract

This paper introduces an idealized cloud-resolving modeling (CRM) framework for the study of midlatitude diurnal convection over land. The framework is used to study the feedbacks among soil, boundary layer, and diurnal convection. It includes a setup with explicit convection and a full set of parameterizations. Predicted variables are constantly relaxed toward prescribed atmospheric profiles and soil conditions. The relaxation is weak in the lower troposphere and upper soil to allow the development of a realistic diurnal planetary boundary layer. The model is run to its own equilibrium (30 days).

The framework is able to produce a realistic timing of the diurnal cycle of convection. It also confirms the development of deeper convection in a more unstably stratified atmosphere.

With this relaxation method, the simulated “diurnal equilibrium convection” determines the humidity profile of the lower atmosphere, and the simulation becomes insensitive to the reference humidity profile. However, if a faster relaxation time is used in the lower troposphere, the convection and rainfall become much more sensitive to the reference humidity, consistent with previous studies.

Corresponding author address: Linda Schlemmer, Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland. E-mail: linda.schlemmer@env.ethz.ch
Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525.

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. Chaboureau, A. Beljaars, A. Betts, M. Köhler, M. Miller, and J. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 7195.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2000: Idealized model for equilibrium boundary layer over land. J. Hydrometeor., 1, 507523.

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482.

  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061016.

    • Search Google Scholar
    • Export Citation
  • Brockhaus, P., D. Lüthi, and C. Schär, 2008: Aspects of the diurnal cycle in a regional climate model. Meteor. Z., 17, 433443.

  • Chaboureau, J. P., F. Guichard, J. L. Redelsperger, and J. P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117.

    • Search Google Scholar
    • Export Citation
  • Christensen, J., T. Carter, M. Rummukainen, and G. Amanatidis, 2007: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81, 16.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 (D6), 63776402.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81, 5370.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1984: Modeling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 58–72.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and J. Förstner, 2004: Development of a kilometer-scale NWP-System: LMK. COSMO Newsletter, No. 4, 159–167. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter04/chp9-5.pdf.]

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Done, J., G. C. Craig, S. L. Gray, P. A. Clark, and M. E. B. Gray, 2006: Mesoscale simulations of organized convection: Importance of convective equilibrium. Quart. J. Roy. Meteor. Soc., 132, 737756.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., D. J. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Förstner, J., and G. Doms, 2004: Runge–Kutta time integration and high-order spatial discretization of advection—A new dynamical core for the LMK. COSMO Newsletter, No. 4, 168–176. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter04/chp9-6.pdf.]

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. Somerville, 1975: On the use of a coordinate transformation for the solution of Navier–Stokes equations. J. Comput. Phys., 17, 209228.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. G., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172.

    • Search Google Scholar
    • Export Citation
  • Heise, E., M. Lange, B. Ritter, and R. Schrodin, 2003: Improvement and validation of the multi-layer soil model. COSMO Newsletter, No. 3, 198–203. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter03/cnl3-chp9-12.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831793.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, and C. Schär, 2008: Towards climate simulation at cloud-resolving scales. Meteor. Z., 17, 383394.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. International Geophysics Series, Vol. 53, Academic Press, 573 pp.

  • Jaeger, E. B., I. Anders, D. Lüthi, B. Rockel, C. Schär, and S. I. Seneviratne, 2008: Analysis of ERA-40-driven CLM simulations for Europe. Meteor. Z., 17, 349367.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385.

  • Mass, C., D. Ovens, K. Westrick, and B. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 83, 407430.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Mironov, D., and M. Raschendorfer, 2001: Evaluation of empirical parameters of the new LM surface-layer parameterization scheme. COSMO Tech. Rep. 1, 12 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport01.pdf.]

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixoto, 1983: Global angular momentum and energy balance requirements from observations. Advances in Geophysics, Vol. 25, Academic Press, 355–490.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peixoto, J. P., and A. H. Oort, 1996: The climatology of relative humidity in the atmosphere. J. Climate, 9, 34433463.

  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Raschendorfer, M., 2001: The new turbulence parameterization of LM. COSMO Newsletter, No. 1, 90–98. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/default.htm.]

    • Search Google Scholar
    • Export Citation
  • Reinhardt, T., and A. Seifert, 2006: A three-category ice scheme for LMK. COSMO Newsletter, No. 6, 115–120. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/cnl6_reinhardt.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J. F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 25632584.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and Coauthors, 2009: Developing the next-generation climate system models: challenges and achievements. Philos. Trans. Roy. Soc., 367A, 815831.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schattler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Vidale, P. L., D. Lüthi, C. Frei, S. I. Seneviratne, and C. Schär, : Predictability and uncertainty in a regional climate model. J. Geophys. Res., 2003 108, 4586, doi:10.1029/2002JD002810.

    • Search Google Scholar
    • Export Citation
  • Vogelzang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., 1982: Toward parameterization of the stable boundary layer. J. Appl. Meteor., 21, 713.

  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126, 19921999.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 intensive observation period data. Quart. J. Roy. Meteor. Soc., 128, 593624.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 125 29
PDF Downloads 142 62 2