Leading and Trailing Anvil Clouds of West African Squall Lines

Jasmine Cetrone Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Jasmine Cetrone in
Current site
Google Scholar
PubMed
Close
and
Robert A. Houze Jr. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

Corresponding author address: Robert Houze, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: houze@washington.edu

Abstract

The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

Corresponding author address: Robert Houze, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: houze@washington.edu
Save
  • Ackerman, T. P., K.-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623.

  • Aspliden, C. I., Y. Tourre, and J. B. Sabine, 1976: Some climatological aspects of West African disturbance lines during GATE. Mon. Wea. Rev., 104, 10291035.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoe, C. Duroure, A. Protat, V. Giraud, and C. Penide, 2010: Microphysical characterisation of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136, 323344.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790.

  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart. J. Roy. Meteor. Soc., 135, 305317.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and D. Hauser, 1989: A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev., 117, 728744.

    • Search Google Scholar
    • Export Citation
  • Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670694.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • DeLonge, M. S., J. D. Fuentes, S. Chan, P. A. Kuchera, E. Joseph, A. T. Gaye, and D. Daouda, 2010: Attributes of mesoscale convective systems and the land-ocean transition in Senegal during NASA African Monsoon Multidisciplinary Analyses of 2006. J. Geophys. Res., 115, D10213, doi:10.1029/2009JD012518.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the Atlantic. Wea. Forecasting, 16, 219233.

    • Search Google Scholar
    • Export Citation
  • Eldridge, R. H., 1957: A synoptic study of west African disturbance lines. Quart. J. Roy. Meteor. Soc., 83, 303314.

  • Fink, A. H., and A. Reiner, 2003: Spatio-temporal variability of the relation between African Easterly Waves and West African Squall Lines in 1998 and 1999. J. Geophys. Res., 108, 4332, doi:10.1029/2002JD002816.

    • Search Google Scholar
    • Export Citation
  • Fortune, M., 1980: Properties of African squall lines inferred from time-lapse satellite imagery. Mon. Wea. Rev., 108, 153168.

  • Futyan, J., and A. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060.

    • Search Google Scholar
    • Export Citation
  • Hamilton, R. A., and J. W. Archbold, 1945: Meteorology of Nigeria and adjacent territory. Quart. J. Roy. Meteor. Soc., 71, 231264.

  • Hodges, K. I., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212837.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567.

  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19, 541576.

  • Houze, R. A., Jr., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays in midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and R. A. Houze Jr., 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 11651207.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20, 55105525.

  • Laing, A. G., R. Carbone, V. Levizzani, and J. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., and W. B. Rossow, 2004: Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17, 45414563.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387.

  • Mapes, B. E., and R. A. Houze Jr., 1992: Satellite-observed cloud clusters in the TOGA-COARE domain. TOGA Notes, April 1992, 5–8.

  • Martin, D. W., and A. J. Schreiner, 1981: Characteristics of West African and East Atlantic cloud clusters: A survey from GATE. Mon. Wea. Rev., 109, 16711688.

    • Search Google Scholar
    • Export Citation
  • Mead, J. B., and K. B. Widener, 2005: W-Band ARM cloud radar. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.3. [Available online at ams.confex.com/ams/pdfpapers/95978.pdf.]

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and ice observations. J. Climate, 13, 40874106.

    • Search Google Scholar
    • Export Citation
  • Nieto-Ferreira, R., T. Rickenbach, N. Guy, and E. Williams, 2009: Radar observations of convective system variability in relationship to African Easterly Waves during the 2006 AMMA special observing period. Mon. Wea. Rev., 137, 41364150.

    • Search Google Scholar
    • Export Citation
  • Payne, S. W., and M. M. McGarry, 1977: The relationship of satellite inferred convective activity to easterly waves over West Africa and the adjacent ocean during phase III of GATE. Mon. Wea. Rev., 105, 413420.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105, 317333.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., E. Klinker, and A. Hollingsworth, 1988: The structure and characteristics of African easterly wave disturbances as determined from the ECMWF operational analysis/forecast system. Meteor. Atmos. Phys., 38, 2233.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T., P. Kucera, M. Gentry, L. Carey, A. Lare, R.-F. Lin, B. Demoz, and D. Starr, 2008: The relationship between anvil clouds and convective cells: A case study in South Florida during CRYSTAL-FACE. Mon. Wea. Rev., 136, 39173932.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T., R. Nieto Ferreira, N. Guy, and E. Williams, 2009: Radar-observed squall-line propagation and the diurnal cycle of convection in Niamey, Niger, during the 2006 African Monsoon and Multidisciplinary Analyses Intensive Observing Period. J. Geophys. Res., 114, D03107, doi:10.1029/2008JD010871.

    • Search Google Scholar
    • Export Citation
  • Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406426.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and J. R. Milford, 1993: On the generation of African squall lines. J. Climate, 6, 11811193.

  • Russel, B., and Coauthors, 2010: Radar/rain-gauge comparisons on squall lines in Niamey, Niger for the AMMA. Quart. J. Roy. Meteor. Soc., 136, 289303.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., and D. L. Hartmann, 1997: A trajectory analysis of tropical upper-tropospheric moisture and convection. J. Climate, 10, 25332547.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and R. Fu, 1995: A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Climate, 8, 23332351.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Testud, 1984: COPT 81: A field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 410.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and N. B. Wood, 2007: Properties of tropical convection observed by millimeter-wave radar systems. Mon. Wea. Rev., 135, 821842.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African Easterly Wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630.

  • Widener, K. B., and J. B. Mead, 2004: W-Band ARM cloud radar–Specifications and design. Proc. 14th ARM Science Team Meeting, Albuquerque, NM, ARM. [Available online at http://www.arm.gov/publications/proceedings/conf14/extended_abs/widener2-kb.pdf?id=63.]

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and D. L. Hartmann, 2008: Spatial and temporal dependence of clouds and their radiative impacts on the large-scale vertical velocity profile. J. Geophys. Res., 113, D19201, doi:10.1029/2007jd009722.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-train satellite data. J. Climate, 23, 58645888.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., D. L. Hartmann, and R. Wood, 2008: Dynamic effects on the tropical cloud radiative forcing and radiation budget. J. Climate, 21, 23372351.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdraughts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 255 61 4
PDF Downloads 249 139 2