A New Parametric Model of Vortex Tangential-Wind Profiles: Development, Testing, and Verification

Vincent T. Wood NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Vincent T. Wood in
Current site
Google Scholar
PubMed
Close
and
Luther W. White Department of Mathematics, University of Oklahoma, Norman, Oklahoma

Search for other papers by Luther W. White in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new parametric model of vortex tangential-wind profiles is presented that is primarily designed to depict realistic-looking tangential wind profiles such as those in intense atmospheric vortices arising in dust devils, waterspouts, tornadoes, mesocyclones, and tropical cyclones. The profile employs five key parameters: maximum tangential wind, radius of maximum tangential wind, and three power-law exponents that shape different portions of the velocity profile. In particular, a new parameter is included controlling the broadly or sharply peaked profile in the annular zone of tangential velocity maximum. Different combinations of varying the model parameters are considered to investigate and understand their effects on the physical behaviors of tangential wind and corresponding vertical vorticity profiles. Additionally, the parametric tangential velocity and vorticity profiles are favorably compared to those of an idealized Rankine model and also those of a theoretical stagnant core vortex model in which no tangential velocity exists within a core boundary and a potential flow occurs outside the core. Furthermore, the parametric profiles are evaluated against and compared to those of two other idealized vortex models (Burgers–Rott and Sullivan). The comparative profiles indicate very good agreements with low root-mean-square errors of a few tenths of a meter per second and high correlation coefficients of nearly one. Thus, the veracity of the parametric model is demonstrated.

Corresponding author address: Vincent Wood, NOAA/NSSL, National Weather Center, Norman, OK 73072–7323. E-mail: vincent.wood@noaa.gov

Abstract

A new parametric model of vortex tangential-wind profiles is presented that is primarily designed to depict realistic-looking tangential wind profiles such as those in intense atmospheric vortices arising in dust devils, waterspouts, tornadoes, mesocyclones, and tropical cyclones. The profile employs five key parameters: maximum tangential wind, radius of maximum tangential wind, and three power-law exponents that shape different portions of the velocity profile. In particular, a new parameter is included controlling the broadly or sharply peaked profile in the annular zone of tangential velocity maximum. Different combinations of varying the model parameters are considered to investigate and understand their effects on the physical behaviors of tangential wind and corresponding vertical vorticity profiles. Additionally, the parametric tangential velocity and vorticity profiles are favorably compared to those of an idealized Rankine model and also those of a theoretical stagnant core vortex model in which no tangential velocity exists within a core boundary and a potential flow occurs outside the core. Furthermore, the parametric profiles are evaluated against and compared to those of two other idealized vortex models (Burgers–Rott and Sullivan). The comparative profiles indicate very good agreements with low root-mean-square errors of a few tenths of a meter per second and high correlation coefficients of nearly one. Thus, the veracity of the parametric model is demonstrated.

Corresponding author address: Vincent Wood, NOAA/NSSL, National Weather Center, Norman, OK 73072–7323. E-mail: vincent.wood@noaa.gov
Save
  • Alekseenko, S. V., P. A. Kuibin, and V. L. Okulov, 2007: Theory of Concentrated Vortices. Springer-Verlag, 494 pp.

  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: Doppler radar observations of dust devils in Texas. Mon. Wea. Rev., 132, 209224.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506.

    • Search Google Scholar
    • Export Citation
  • Burgers, J. M., 1948: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 171199.

  • Cantor, B. A., K. K. Kanak, and K. S. Edgett, 2006: Mars orbiter camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res., 111, E12002, doi:10.1029/2006JE002700.

    • Search Google Scholar
    • Export Citation
  • Church, C. R., and J. T. Snow, 1993: Laboratory models of tornadoes. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, C. Church et al., Eds., Amer. Geophys. Union, 277–295.

    • Search Google Scholar
    • Export Citation
  • Church, C. R., J. T. Snow, G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 17551776.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2nd ed. E. Kessler, Ed., University of Oklahoma Press, 197–236.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and V. T. Wood, 2006: Simulated Doppler velocity signatures of evolving tornado-like vortices. J. Atmos. Oceanic Technol., 23, 10291048.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., C. R. Alexander, J. M. Wurman, and L. J. Wicker, 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., 1989: Conditions for laminar flow in geophysical vortices. J. Atmos. Sci., 46, 252259.

  • Fiedler, B. H., 1994: The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices. Atmos.–Ocean, 32, 335359.

    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum wind speeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340.

  • Hoecker, W. H., 1960: Wind speed and air flow patterns in the Dallas tornado of April 2, 1957. Mon. Wea. Rev., 88, 167180.

  • Houston, S. H., and M. D. Powell, 1994: Observed and modeled wind and water-level response from Tropical Storm Marco (1990). Wea. Forecasting, 9, 427439.

    • Search Google Scholar
    • Export Citation
  • Jelesnianski, C. P., 1966: Numerical computations of storm surges without bottom stress. Mon. Wea. Rev., 94, 379394.

  • Kanak, K. M., 2005: Numerical simulation of dust devil–scale vortices. Quart. J. Roy. Meteor. Soc., 131, 12711292.

  • Kaufmann, V. W., 1962: Über die Ausbreitung kreiszylindrischer Wirbel in zähen (viskosen) Flussigkeiten. Ing. Arch., 31, 19.

  • Kreyszig, E., 1988: Advanced Engineering Mathematics. 6th ed. John Wiley & Sons, 1294 pp.

  • Lamb, H., 1932: Hydrodynamics. Cambridge University Press, 738 pp.

  • Lee, W.-C., and J. Wurman, 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393.

    • Search Google Scholar
    • Export Citation
  • Leslie, F. W., and J. T. Snow, 1980: Sullivan’s two-celled vortex. AIAA J., 18, 12721274.

  • Levenberg, K., 1944: A method for the solution of certain problems in least squares. Q. Appl. Math., 2, 164168.

  • Leverson, V. H., P. C. Sinclair, and J. H. Golden, 1977: Waterspout wind, temperature, and pressure structure deduced from aircraft measurements. Mon. Wea. Rev., 105, 715733.

    • Search Google Scholar
    • Export Citation
  • Lugt, H. J., 1983: Vortex Flow in Nature and Technology. John Wiley & Sons, 297 pp.

  • Lugt, H. J., 1996: Introduction to Vortex Theory. Vortex Flow Press, 627 pp.

  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425.

    • Search Google Scholar
    • Export Citation
  • Marquardt, D., 1963: An algorithm for least squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431441.

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340.

  • Oseen, C. W., 1911: Über Wirbelbewegung in einer reibenden Flüssigkeit. Ark. Mat. Astron. Fys., 7, 113.

  • Pauley, R. L., and J. T. Snow, 1988: On the kinematics and dynamics of the 18 July 1986 Minneapolis tornado. Mon. Wea. Rev., 116, 27312736.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Rankine, W. J. M., 1882: A Manual of Applied Physics. 10th ed. Charles Griff and Co., 663 pp.

  • Rott, N., 1958: On the viscous core of a line vortex. Z. Angew. Math. Phys., 9, 543553.

  • Rotunno, R., 1977: Numerical simulation of a laboratory vortex. J. Atmos. Sci., 34, 19421956.

  • Rotunno, R., 1984: An investigation of a three-dimensional asymmetric vortex. J. Atmos. Sci., 41, 283298.

  • Schwiesow, R. L., 1981: Horizontal velocity structure in waterspouts. J. Appl. Meteor., 20, 349360.

  • Scully, M. P., 1975: Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. MIT Rep. ASRL TR 178-1, 469 pp.

    • Search Google Scholar
    • Export Citation
  • Sinclair, P. C., 1973: The lower structure of dust devils. J. Atmos. Sci., 30, 15991619.

  • Smith, R. K., W. Ulrich, and G. Dietachmayer, 1990: A numerical study of tropical cyclone motion using a barotropic model. I: The role of vortex asymmetries. Quart. J. Roy. Meteor. Soc., 116, 337362.

    • Search Google Scholar
    • Export Citation
  • Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys., 20, 953964.

  • Snow, J. T., 1984: On the formation of particle sheaths in columnar vortices. J. Atmos. Sci., 41, 24772491.

  • Snow, J. T., and D. E. Lund, 1989: Inertial motions in analytical vortex models. J. Atmos. Sci., 46, 36053610.

  • Sullivan, R. D., 1959: A two-cell vortex solution of the Navier–Stokes equations. J. Aerosp. Sci., 26, 767768.

  • Tanamachi, R. L., H. B. Bluestein, W.-C. Lee, M. Bell, and A. Pazmany, 2007: Ground-based velocity track display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800.

    • Search Google Scholar
    • Export Citation
  • Toigo, A. D., M. I. Richardson, S. P. Ewald, and P. J. Gierasch, 2003: Numerical simulation of Martian dust devils. J. Geophys. Res., 108, 5047, doi:10.1029/2002JE002002.

    • Search Google Scholar
    • Export Citation
  • Tratt, D. M., M. H. Hecht, D. C. Catling, E. C. Samulon, and P. H. Smith, 2003: In situ measurement of dust devil dynamics: Toward a strategy for Mars. J. Geophys. Res., 108, 5116, doi:10.1029/2003JE002161.

    • Search Google Scholar
    • Export Citation
  • Vatistas, G. H., 1998: New model for intense self-similar vortices. J. Prop. Power, 14, 462469.

  • Vatistas, G. H., and Y. Aboelkassem, 2006: Space-time analogy of self-similar intense vortices. AIAA J., 44, 912917.

  • Vatistas, G. H., V. Kozel, and W. C. Mih, 1991: A simpler model for concentrated vortices. Exp. Fluids, 11, 7376.

  • Wu, J.-Z., H.-Y. Ma, and M.-D. Zhou, 2006: Vorticity and Vortex Dynamics. Springer-Verlag, 780 pp.

  • Wurman, J., 2002: The multiple-vortex structure of a tornado. Wea. Forecasting, 17, 473505.

  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and C. R. Alexander, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes. Mon. Wea. Rev., 133, 97119.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., C. Alexander, P. Robinson, and Y. Richardson, 2007: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88, 3146.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1914 1045 79
PDF Downloads 15473 220 24