Statistical Analysis of Aerosol Effects on Simulated Mixed-Phase Clouds and Precipitation in the Alps

Elias M. Zubler Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Elias M. Zubler in
Current site
Google Scholar
PubMed
Close
,
Ulrike Lohmann Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Ulrike Lohmann in
Current site
Google Scholar
PubMed
Close
,
Daniel Lüthi Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Daniel Lüthi in
Current site
Google Scholar
PubMed
Close
,
Christoph Schär Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
, and
Andreas Muhlbauer Joint Institute of the Study of the Atmosphere and Ocean, and Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Andreas Muhlbauer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Increasing the aerosol number in warm-phase clouds is thought to decrease the rain formation rate, whereas the physical processes taking place in mixed-phase clouds are more uncertain. Increasing number concentrations of soluble aerosols may reduce the riming efficiency and therefore also decrease precipitation. On the other hand, the glaciation of a cloud by heterogeneous freezing of cloud droplets may enhance the formation of graupel and snow. Using a numerical weather prediction model with coupled aerosol microphysics, it is found, in a statistical framework with 270 clean and polluted 2D simulations of mixed-phase precipitation over an Alpine transect, that the presence of the ice phase determines the magnitude and the sign of the effect of an increasing aerosol number concentration on orographic precipitation. Immersion/condensation freezing is the only ice-nucleating process considered here. It is shown that this indirect aerosol effect is much less pronounced in cold simulations compared to a warmer subset and that cloud glaciation tends to compensate the loss of rain in polluted situations. Comparing the clean and polluted cases, a reduction of rain by 52%, on average (std dev = 25%), over the transect in the polluted cases is found. For frozen precipitation a much broader range of differences is found (mean = +4%, std dev = 60%). Furthermore, this study shows that in comparison with the clean cases more precipitation spills over to the leeward side of the major ridge in the polluted cases (median = +14.6%).

Corresponding author address: Elias M. Zubler, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland. E-mail: elias.zubler@env.ethz.ch

Abstract

Increasing the aerosol number in warm-phase clouds is thought to decrease the rain formation rate, whereas the physical processes taking place in mixed-phase clouds are more uncertain. Increasing number concentrations of soluble aerosols may reduce the riming efficiency and therefore also decrease precipitation. On the other hand, the glaciation of a cloud by heterogeneous freezing of cloud droplets may enhance the formation of graupel and snow. Using a numerical weather prediction model with coupled aerosol microphysics, it is found, in a statistical framework with 270 clean and polluted 2D simulations of mixed-phase precipitation over an Alpine transect, that the presence of the ice phase determines the magnitude and the sign of the effect of an increasing aerosol number concentration on orographic precipitation. Immersion/condensation freezing is the only ice-nucleating process considered here. It is shown that this indirect aerosol effect is much less pronounced in cold simulations compared to a warmer subset and that cloud glaciation tends to compensate the loss of rain in polluted situations. Comparing the clean and polluted cases, a reduction of rain by 52%, on average (std dev = 25%), over the transect in the polluted cases is found. For frozen precipitation a much broader range of differences is found (mean = +4%, std dev = 60%). Furthermore, this study shows that in comparison with the clean cases more precipitation spills over to the leeward side of the major ridge in the polluted cases (median = +14.6%).

Corresponding author address: Elias M. Zubler, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland. E-mail: elias.zubler@env.ethz.ch
Save
  • Alpert, P., N. Halfon, and Z. Levin, 2008: Does air pollution really suppress precipitation in Israel? J. Appl. Meteor. Climatol., 47, 933943.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan mineral dust experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Borys, R., D. Lowenthal, and D. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602.

    • Search Google Scholar
    • Export Citation
  • Borys, R., D. Lowenthal, S. Cohn, and W. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061015.

    • Search Google Scholar
    • Export Citation
  • Coen, M., E. Weingartner, D. Schaub, C. Hueglin, C. Corrigan, S. Henning, M. Schwikowski, and U. Baltensperger, 2004: Saharan dust events at the Jungfraujoch: Detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos. Chem. Phys., 4, 24652480.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606.

    • Search Google Scholar
    • Export Citation
  • Cooper, W., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Search Google Scholar
    • Export Citation
  • Cooper, W., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 12441259.

  • Cozic, J., and Coauthors, 2007: Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos. Chem. Phys. Discuss., 7, 12 14512 184.

    • Search Google Scholar
    • Export Citation
  • Davies, H., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405418.

  • DeMott, P., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 10721079.

  • DeMott, P., Y. Chen, S. Kreidenweis, D. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26, 24292432.

    • Search Google Scholar
    • Export Citation
  • DeMott, P., K. Sassen, M. Poellot, D. Baumgardner, D. Rogers, S. Brooks, A. Prenni, and S. Kreidenweis, 2004: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61, 20632072.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and U. Schättler, 2002: A description of the nonhydrostatic regional model LM. Part I: Dynamics and numerics. Deutscher Wetterdienst Tech. Rep., 134 pp.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. DeMott, and S. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., O. Möhler, P. Connolly, M. Kramer, A. Cotton, A. Heymsfield, M. Schnaiter, and H. Saathoff, 2006: Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys., 6, 29913006.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N., 1962: The Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Förstner, J., and G. Doms, 2004: Runge–Kutta time integration and high-order spatial discretization of advection—A new dynamical core for the LMK. COSMO Newsletter, No. 4, Consortium for Small-Scale Modeling, 168–176. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter04/chp9-6.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and C. J. Sommerville, 1975: On the use of a coordinate transform for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209228.

    • Search Google Scholar
    • Export Citation
  • Gibbons, J., 1985: Nonparametric Statistical Inference. Marcel Dekker, 408 pp.

  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43, 10381056.

  • Hallett, J., and S. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628.

  • Herzog, H.-J., G. Vogel, and U. Schubert, 2002: LLM—A nonhydrostatic model applied to high-resolving simulations of turbulent fluxes over heterogeneous terrain. Theor. Appl. Climatol., 73, 6786.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., and M. Kajikawa, 1987: An improved approach to calculating terminal fall velocities of platelike crystals and graupel. J. Atmos. Sci., 44, 10881099.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, doi:10.1088/1748-9326/3/2/025003.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M., A. Tabazadeh, and R. Turco, 1996: Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols. J. Geophys. Res., 101, 90799091.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316.

  • Jiang, Q., 2006: Precipitation over concave terrain. J. Atmos. Sci., 63, 22692288.

  • Jiang, Q., 2007: Precipitation over multiscale terrain. Tellus, 59A, 321335.

  • Jiang, Q., and R. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15431559.

  • Jirak, I. L., and W. R. Cotton, 2006: Effect of air pollution on precipitation along the Front Range of the Rocky Mountains. J. Appl. Meteor., 45, 236245.

    • Search Google Scholar
    • Export Citation
  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V., 1995: Mesoscale processes of cloud formation, cloud–radiation interaction, and their modeling with explicit cloud microphysics. Atmos. Res., 39, 167.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V., and J. Curry, 2004: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part I: Critical radius, energy, and nucleation rate. J. Atmos. Sci., 61, 26762691.

    • Search Google Scholar
    • Export Citation
  • Koren, I., J. Martins, L. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321, 946949.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. Isaac, S. Cober, J. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 3965.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., and P. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30, 11351152.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and R. Leaitch, 1997: Development of an in-cloud aerosol activation parameterization for climate modelling. Proc. WMO Workshop on Measurements of Cloud Properties for Forecasts of Weather and Climate, Geneva, Switzerland, World Meteorological Organisation, 328–335.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J., and P. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.

  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 1052, doi:10.1029/2001GL014357.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J. Atmos. Sci., 63, 968982.

    • Search Google Scholar
    • Export Citation
  • Lowenthal, D., R. Borys, and M. Wetzel, 2002: Aerosol distributions and cloud interactions at a mountaintop laboratory. J. Geophys. Res., 107, 4345, doi:10.1029/2001JD002046.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091.

    • Search Google Scholar
    • Export Citation
  • Meyers, M., P. DeMott, and W. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and A. Buzzi, 2004: A numerical study of moist stratified flow regimes over isolated topography. Quart. J. Roy. Meteor. Soc., 130, 17491770.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2005: Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res., 110, D11210, doi:10.1029/2004JD005169.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys. Discuss., 6, 15391577.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2008: Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different dynamical flow regimes. J. Atmos. Sci., 65, 25222542.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2009: Sensitivity studies of aerosol–cloud interactions in mixed-phase orographic precipitation. J. Atmos. Sci., 66, 25172538.

    • Search Google Scholar
    • Export Citation
  • Peng, Y., U. Lohmann, R. Leaitch, C. Banic, and M. Couture, 2002: The cloud albedo–cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE. J. Geophys. Res., 107, 4106, doi:10.1029/2000JD000281.

    • Search Google Scholar
    • Export Citation
  • Phillips, V., P. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Rosenfeld, D., and A. Givati, 2006: Evidence of orographic precipitation suppression by air pollution–induced aerosols in the western United States. J. Appl. Meteor. Climatol., 45, 893911.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., J. Dai, X. Yu, Z. Yao, X. Xu, X. Yang, and C. Du, 2007: Inverse relations between amounts of air pollution and orographic precipitation. Science, 315, 13961398.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., P. DeMott, J. Prospero, and M. Poellot, 2003: Saharan dust storms and indirect effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, 1633, doi:10.1029/2003GL017371.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description. Meteor. Atmos. Phys., 92, 4566.

    • Search Google Scholar
    • Export Citation
  • Smith, R., 2006: Progress on the theory of orographic precipitation. Tectonics, Climate, and Landscape Evolution, S. Willett, Ed., Geological Society of America, 1–16.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Stier, P., and Coauthors, 2005: The aerosol–climate model ECHAM5-HAM. Atmos. Chem. Phys., 5, 11251156.

  • Twomey, S., M. Piepgrass, and T. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo. Tellus, 36B, 356366.

  • Vali, G., 1985: Nucleation terminology. Bull. Amer. Meteor. Soc., 66, 14261427.

  • Vali, G., 2008: Repeatability and randomness in heterogeneous freezing nucleation. Atmos. Chem. Phys., 8, 50175031.

  • Vehkamäki, H., M. Kulmala, I. Napari, K. Lehtinen, C. Timmreck, M. Noppel, and A. Laaksonen, 2002: An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions. J. Geophys. Res., 107, 4622, doi:10.1029/2002JD002184.

    • Search Google Scholar
    • Export Citation
  • Verheggen, B., and Coauthors, 2007: Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds. J. Geophys. Res., 112, D23202, doi:10.1029/2007JD008714.

    • Search Google Scholar
    • Export Citation
  • Vignati, E., J. Wilson, and P. Stier, 2004: M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res., 109, D22202, doi:10.1029/2003JD004485.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., S. Nyeki, and U. Baltensperger, 1999: Seasonal and diurnal variation of aerosol size distributions (10 < d < 750 nm) at a high-alpine site (Jungfraujoch 3580 m ASL). J. Geophys. Res., 104 (D21), 26 80926 820.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., M. Gysel, and U. Baltensperger, 2002: Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: Setup and first applications. Environ. Sci. Technol., 36, 5562.

    • Search Google Scholar
    • Export Citation
  • Wicker, L., and W. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 380 89 12
PDF Downloads 166 45 9