The Modified Gamma Size Distribution Applied to Inhomogeneous and Nonspherical Particles: Key Relationships and Conversions

Grant W. Petty University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Grant W. Petty in
Current site
Google Scholar
PubMed
Close
and
Wei Huang University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Wei Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The four-parameter modified gamma distribution (MGD) is the most general mathematically convenient model for size distributions of particle types ranging from aerosols and cloud droplets or ice particles to liquid and frozen precipitation. The common three-parameter gamma distribution, the exponential distribution (e.g., Marshall–Palmer), and power-law distribution (e.g., Junge) are all special cases. Depending on the context, the particle “size” used in a given formulation may be the actual geometric diameter, the volume- or area-equivalent spherical diameter, the actual or equivalent radius, the projected or surface area, or the mass.

For microphysical and radiative transfer calculations, it is often necessary to convert from one size representation to another, especially when comparing or utilizing distribution parameters obtained from a variety of sources. Furthermore, when the mass scales with Db, with b < 3, as is typical for snow and ice and other particles having a quasi-fractal structure, an exponential or gamma distribution expressed in terms of one size parameter becomes an MGD when expressed in terms of another. The MGD model is therefore more fundamentally relevant to size distributions of nonspherical particles than is often appreciated.

The central purpose of this paper is to serve as a concise single-source reference for the mathematical properties of, and conversions between, atmospheric particle size distributions that can expressed as MGDs, including exponential and gamma distributions as special cases.

For illustrative purposes, snow particle size distributions published by Sekhon and Srivastava, Braham, and Field et al. are converted to a common representation and directly compared for identical snow water content, allowing large differences in their properties to be discerned and quantified in a way that is not as easily achieved without such conversion.

Corresponding author address: Grant W. Petty, Department of Atmospheric and Oceanic Science, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: gpetty@aos.wisc.edu

Abstract

The four-parameter modified gamma distribution (MGD) is the most general mathematically convenient model for size distributions of particle types ranging from aerosols and cloud droplets or ice particles to liquid and frozen precipitation. The common three-parameter gamma distribution, the exponential distribution (e.g., Marshall–Palmer), and power-law distribution (e.g., Junge) are all special cases. Depending on the context, the particle “size” used in a given formulation may be the actual geometric diameter, the volume- or area-equivalent spherical diameter, the actual or equivalent radius, the projected or surface area, or the mass.

For microphysical and radiative transfer calculations, it is often necessary to convert from one size representation to another, especially when comparing or utilizing distribution parameters obtained from a variety of sources. Furthermore, when the mass scales with Db, with b < 3, as is typical for snow and ice and other particles having a quasi-fractal structure, an exponential or gamma distribution expressed in terms of one size parameter becomes an MGD when expressed in terms of another. The MGD model is therefore more fundamentally relevant to size distributions of nonspherical particles than is often appreciated.

The central purpose of this paper is to serve as a concise single-source reference for the mathematical properties of, and conversions between, atmospheric particle size distributions that can expressed as MGDs, including exponential and gamma distributions as special cases.

For illustrative purposes, snow particle size distributions published by Sekhon and Srivastava, Braham, and Field et al. are converted to a common representation and directly compared for identical snow water content, allowing large differences in their properties to be discerned and quantified in a way that is not as easily achieved without such conversion.

Corresponding author address: Grant W. Petty, Department of Atmospheric and Oceanic Science, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: gpetty@aos.wisc.edu
Save
  • Ackerman, S. A., and G. L. Stephens, 1987: The absorption of solar radiation by cloud droplets: An application of anomalous diffraction theory. J. Atmos. Sci., 44, 15741588.

    • Search Google Scholar
    • Export Citation
  • Auf der Maur, A. N., 2001: Statistical tools for drop size distributions: Moments and generalized gamma. J. Atmos. Sci., 58, 407418.

  • Babb, D. M., J. Verlinde, and B. A. Albrecht, 1999: Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. J. Atmos. Oceanic Technol., 16, 489503.

    • Search Google Scholar
    • Export Citation
  • Braham R. R., Jr., 1990: Snow particle size spectra in lake effect snows. J. Appl. Meteor., 29, 200207.

  • Brandes, E., K. Ikeda, G. Zhand, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650.

    • Search Google Scholar
    • Export Citation
  • Brawn, D., and G. Upton, 2007: Closed-form parameter estimates for a truncated gamma distribution. Environmetrics, 18, 633645.

  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414.

    • Search Google Scholar
    • Export Citation
  • Deirmendjian, D., 1963: Scattering and polarization properties of polydispersed suspensions with partial absorption. Electromagnetic Scattering, M. Kerker, Ed., Pergamon Press, 171–189.

    • Search Google Scholar
    • Export Citation
  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, 290 pp.

  • Delanoë, J., A. Protat, J. Testud, D. Bouniol, A. J. Heymsfield, A. Bansemer, P. R. A. Brown, and R. M. Forbes, 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110, D10201, doi:10.1029/2004JD005405.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, D. Bouniol, A. Heymsfield, A. Bansemer, and P. Brown, 2007: The characterization of ice cloud properties from Doppler radar measurements. J. Appl. Meteor. Climatol., 46, 16821698.

    • Search Google Scholar
    • Export Citation
  • Field, P., A. Heymsfield, and A. Bansemer, 2007: Snow size distribution parameterization for midlatitude and tropical ice clouds. J. Atmos. Sci., 64, 43464365.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, and E. N. Anagnostou, 2004: Retrieval of precipitation profiles from multiresolution, multifrequency active and passive microwave observations. J. Appl. Meteor., 43, 562575.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Atmos. Sci., 15, 452461.

  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610.

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 60, 936956.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. Dye, W. Hall, and C. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. G. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor., 39, 20382051.

    • Search Google Scholar
    • Export Citation
  • Jameson, A., 1993: Estimating the path-average rainwater content and updraft speed along a microwave link. J. Atmos. Oceanic Technol., 10, 478485.

    • Search Google Scholar
    • Export Citation
  • Junge, C., 1955: The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteor., 12, 1325.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259270.

    • Search Google Scholar
    • Export Citation
  • Kuo, K., E. A. Smith, Z. Haddad, E. Im, T. Iguchi, and A. Mugnai, 2004: Mathematical–physical framework for retrieval of rain DSD properties from dual-frequency Ku–Ka-band satellite radar. J. Atmos. Sci., 61, 23492369.

    • Search Google Scholar
    • Export Citation
  • Lee, G., I. Zawadzki, W. Szyrmer, D. Sempere-Torres, and R. Uijlenhoet, 2004: A general approach to double-moment normalization of drop size distributions. J. Appl. Meteor., 43, 264281.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.

  • Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 13931412.

    • Search Google Scholar
    • Export Citation
  • Mallet, C., and L. Barthes, 2009: Estimation of gamma raindrop size distribution parameters: Statistical fluctuations and estimation errors. J. Atmos. Oceanic Technol., 26, 15721584.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. H. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 20392052.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Kozu, H. Kumagai, and W. Boncyk, 1992: A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean. J. Atmos. Oceanic Technol., 9, 364382.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48, 18851899.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiative transfer: General definition, applications, and limitations. J. Atmos. Sci., 59, 23302346.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and W. P. Arnott, 1994: A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology. J. Atmos. Sci., 51, 817832.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., A. Macke, and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 29672988.

    • Search Google Scholar
    • Export Citation
  • Muller, B. M., H. E. Fuelberg, and E. A. Smith, 1993: An alternative representation of the ice canopy for calculating microwave brightness temperatures over a thunderstorm. J. Appl. Meteor., 32, 10061013.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787.

    • Search Google Scholar
    • Export Citation
  • Rose, C., and V. Chandrasekar, 2006: A GPM dual-frequency retrieval algorithm: DSD profile-optimization method. J. Atmos. Oceanic Technol., 23, 13721383.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2009: The size distribution and mass-weighted terminal velocity of low-latitude tropopause cirrus crystal populations. J. Atmos. Sci., 66, 20132028.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616.

    • Search Google Scholar
    • Export Citation
  • Schneider, T. L., and G. L. Stephens, 1995: Theoretical aspects of modeling backscattering by cirrus ice particles at millimeter wavelengths. J. Atmos. Sci., 52, 43674385.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27, 299307.

  • Smith, P., and D. Kliche, 2005: The bias in moment estimators for parameters of drop size distribution functions: Sampling from exponential distributions. J. Appl. Meteor., 44, 11951205.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 392 pp.

  • Sun, X., Y. Han, and H. Wang, 2006: Near-infrared light scattering by ice-water mixed clouds. Prog. Electromag. Res., 61, 133142.

  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra. A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, A. J. Heymsfield, A. Bansemer, L. Li, C. H. Twohy, and R. C. Srivastava, 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216.

    • Search Google Scholar
    • Export Citation
  • Tomasi, C., R. Guzzi, and O. Vittori, 1975: The “SO2–NH3—solution droplets” system in an urban atmosphere. J. Atmos. Sci., 32, 15801586.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor., 24, 580590.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., B. E. Martner, M. K. Politovich, and G. Zhang, 1999: Retrieval of atmospheric liquid and ice characteristic using dual-wavelength radar observations. IEEE Trans. Geosci. Remote Sens., 37, 23252334.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev. E, 70, 021403, doi:10.1103/PhysRevE.70.021403.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4168 853 78
PDF Downloads 3008 699 74