• Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Annan, J. D., 2004: On the orthogonality of bred vectors. Mon. Wea. Rev., 132, 843849.

  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765.

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Corazza, M., and Coauthors, 2003: Use of the breeding technique to estimate the structure of the analysis “errors of the day.” Nonlinear Processes Geophys., 10, 233243.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and A. E. Raftery, 2005: Weather forecasting with ensemble methods. Science, 310, 248249.

  • Hallerberg, S., D. Pazó, J. M. López, and M. A. Rodríguez, 2010: Logarithmic bred vectors in spatiotemporal chaos: Structure and growth. Phys. Rev. E, 81, 066204, doi:10.1103/PhysRevE.81.066204.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Kalnay, E., M. Corazza, and M. Cai, 2002: Are bred vectors the same as Lyapunov vectors? Preprints, Symp. on Observations, Data Assimilation, and Probabilistic Prediction, Orlando, FL, Amer. Meteor. Soc., 173–177.

    • Search Google Scholar
    • Export Citation
  • Keller, J. D., A. Hense, L. Kornblueh, and A. Rhodin, 2010: On the orthogonalization of bred vectors. Wea. Forecasting, 25, 12191234.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1996: Predictability a problem partly solved. Proc. Seminar on Predictability, Vol. I, T. Palmer, Ed., ECMWF, Reading, United Kingdom, 1–18.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 2006: Regimes in simple systems. J. Atmos. Sci., 63, 20562073.

  • Lorenz, E. N., and K. A. Emanuel, 1998: Optimal sites for supplementary weather observations: Simulations with a small model. J. Atmos. Sci., 55, 399414.

    • Search Google Scholar
    • Export Citation
  • Newman, C. E., P. L. Read, and S. R. Lewis, 2004: Investigating atmospheric predictability on Mars using breeding vectors in a general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 29712989.

    • Search Google Scholar
    • Export Citation
  • Oczkowki, M., I. Szunyogh, and D. J. Patil, 2005: Mechanisms for the development of locally low-dimensional atmospheric dynamics. J. Atmos. Sci., 62, 11351156.

    • Search Google Scholar
    • Export Citation
  • Patil, D. J., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 58785881.

    • Search Google Scholar
    • Export Citation
  • Pazó, D., M. A. Rodríguez, and J. M. López, 2010: Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors. Tellus, 62A, 1023.

    • Search Google Scholar
    • Export Citation
  • Primo, C., M. A. Rodríguez, J. M. López, and I. Szendro, 2005: Predictability, bred vectors, and generation of ensembles in space-time chaotic systems. Phys. Rev. E, 72, 015201, doi:10.1103/PhysRevE.72.015201.

    • Search Google Scholar
    • Export Citation
  • Primo, C., I. G. Szendro, M. A. Rodríguez, and J. M. López, 2006: Dynamic scaling of bred vectors in spatially extended chaotic systems. Europhys. Lett., 76, 767773.

    • Search Google Scholar
    • Export Citation
  • Primo, C., M. A. Rodríguez, and J. M. Gutiérrez, 2008: Logarithmic bred vectors. A new ensemble method with adjustable spread and calibration time. J. Geophys. Res., 113, D05116, doi:10.1029/2007JD008998.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330.

  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319.

  • Wang, X., and C. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 11401158.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. Bishop, and X. Wang, 2006: Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus, 58A, 2844.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Z. Toth, R. Wobus, and Y. Zhu, 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279.

    • Search Google Scholar
    • Export Citation
  • Young, R. M. B., and P. L. Read, 2008: Breeding and predictability in the baroclinic rotating annulus using a perfect model. Nonlinear Processes Geophys., 15, 469487.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Maximizing the Statistical Diversity of an Ensemble of Bred Vectors by Using the Geometric Norm

View More View Less
  • 1 Instituto de Física de Cantabria, CSIC–Universidad de Cantabria, Santander, Spain
Restricted access

Abstract

It is shown that the choice of the norm has a great impact on the construction of ensembles of bred vectors. The geometric norm maximizes (in comparison with other norms such as the Euclidean one) the statistical diversity of the ensemble while at the same time it enhances the growth rate of the bred vector and its projection on the linearly most unstable direction (i.e., the Lyapunov vector). The geometric norm is also optimal in providing the least fluctuating ensemble dimension among all the spectrum of norms studied. The results are exemplified with numerical integrations of a toy model of the atmosphere (the Lorenz-96 model), but these findings are expected to be generic for spatially extended chaotic systems.

Corresponding author address: Diego Pazó, Instituto de Física de Cantabria (IFCA), CSIC–Universidad de Cantabria, Avda. Los Castros, E-39005 Santander, Spain. E-mail: pazo@ifca.unican.es

Abstract

It is shown that the choice of the norm has a great impact on the construction of ensembles of bred vectors. The geometric norm maximizes (in comparison with other norms such as the Euclidean one) the statistical diversity of the ensemble while at the same time it enhances the growth rate of the bred vector and its projection on the linearly most unstable direction (i.e., the Lyapunov vector). The geometric norm is also optimal in providing the least fluctuating ensemble dimension among all the spectrum of norms studied. The results are exemplified with numerical integrations of a toy model of the atmosphere (the Lorenz-96 model), but these findings are expected to be generic for spatially extended chaotic systems.

Corresponding author address: Diego Pazó, Instituto de Física de Cantabria (IFCA), CSIC–Universidad de Cantabria, Avda. Los Castros, E-39005 Santander, Spain. E-mail: pazo@ifca.unican.es
Save