Microphysics of Premonsoon and Monsoon Clouds as Seen from In Situ Measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX)

Thara V. Prabha Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by Thara V. Prabha in
Current site
Google Scholar
PubMed
Close
,
A. Khain Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
,
R. S. Maheshkumar Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by R. S. Maheshkumar in
Current site
Google Scholar
PubMed
Close
,
G. Pandithurai Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by G. Pandithurai in
Current site
Google Scholar
PubMed
Close
,
J. R. Kulkarni Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by J. R. Kulkarni in
Current site
Google Scholar
PubMed
Close
,
M. Konwar Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by M. Konwar in
Current site
Google Scholar
PubMed
Close
, and
B. N. Goswami Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by B. N. Goswami in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analysis of the microphysical structure of deep convective clouds using in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) over the Indian peninsular region is presented. It is shown that droplet size distributions (DSDs) in highly polluted premonsoon clouds are substantially narrower than DSDs in less polluted monsoon clouds. High values of DSD dispersion (0.3–0.6) and its vertical variation in the transient and monsoon clouds are related largely to the existence of small cloud droplets with diameters less than 10 μm, which were found at nearly all levels. This finding indicates the existence of a continuous generation of the smallest droplets at different heights. In some cases this generation of small droplets leads to the formation of bimodal and even multimodal DSDs. The formation of bimodal DSDs is especially pronounced in monsoon clouds. Observational evidence is presented to suggest that in-cloud nucleation at elevated layers is a fundamental mechanism for producing multimodal drop size distribution in monsoon clouds as well as in most deep convective clouds. These findings indicate that inclusion of continued nucleation away from the cloud base into numerical models should be considered to predict microphysics and precipitation of clouds in monsoons and other cloud-related phenomena.

Corresponding author address: Thara V. Prabha, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India. E-mail: thara@tropmet.res.in

Abstract

Analysis of the microphysical structure of deep convective clouds using in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) over the Indian peninsular region is presented. It is shown that droplet size distributions (DSDs) in highly polluted premonsoon clouds are substantially narrower than DSDs in less polluted monsoon clouds. High values of DSD dispersion (0.3–0.6) and its vertical variation in the transient and monsoon clouds are related largely to the existence of small cloud droplets with diameters less than 10 μm, which were found at nearly all levels. This finding indicates the existence of a continuous generation of the smallest droplets at different heights. In some cases this generation of small droplets leads to the formation of bimodal and even multimodal DSDs. The formation of bimodal DSDs is especially pronounced in monsoon clouds. Observational evidence is presented to suggest that in-cloud nucleation at elevated layers is a fundamental mechanism for producing multimodal drop size distribution in monsoon clouds as well as in most deep convective clouds. These findings indicate that inclusion of continued nucleation away from the cloud base into numerical models should be considered to predict microphysics and precipitation of clouds in monsoons and other cloud-related phenomena.

Corresponding author address: Thara V. Prabha, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411008, India. E-mail: thara@tropmet.res.in
Save
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., H. Jonsson, W. Dawson, D. O’Connor, and R. Newton, 2001: The cloud, aerosol and precipitation spectrometer: A new instrument for cloud investigations. Atmos. Res., 59–60, 251264.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., and W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136.

    • Search Google Scholar
    • Export Citation
  • Erlick, C., A. Khain, M. Pinsky, and Y. Segal, 2005: The effect of wind velocity fluctuations on drop spectrum broadening in stratiform clouds. Atmos. Res., 75, 1545.

    • Search Google Scholar
    • Export Citation
  • Freud, E., D. Rosenfeld, M. O. Andreae, A. A. Costa, and P. Artaxo, 2008: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmos. Chem. Phys., 8, 16611675.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice crystals during the riming process. Nature, 249, 2628.

  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C. J. Atmos. Sci., 66, 35303562.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P.V. 1993: Aerosol-Cloud-Climate Interactions. Academic Press, 236 pp.

  • Houze, R. A., and D. D. Churchill, 1984: Microphysical structure of winter monsoon cloud clusters. J. Atmos. Sci., 41, 34053411.

  • Jaenicke, R., 1993: Tropospheric aerosols. Aerosol–Cloud–Climate Interactions, P. Hobbs, Ed., Academic Press, 1–31.

  • Jensen, E. J., and Coauthors, 2009: On the importance of small ice crystals in tropical anvil cirrus. Atmos. Chem. Phys. Discuss., 9, 53215370.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 29833001.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y., 1991: The simulation of a convective cloud in a 3D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 1994: A study of bimodal droplet size distributions in stratiform clouds. Atmos. Res., 32, 143170.

  • Korolev, A. V., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci., 52, 36203634.

  • Korolev, A. V., 2007: Limitations of the Wegener–Bergeron–Findeisen mechanism in the evolution of mixed-phase clouds. J. Atmos. Sci., 64, 33723375.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974.

  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, Eds., 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, 386 pp.

  • Low, T. B., and R. List, 1982: Collision, coalescence and breakup of raindrops, Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 16071619.

    • Search Google Scholar
    • Export Citation
  • Ludlam, F. H., 1980: Clouds and Storms. The Pennsylvania State University Press, 405 pp.

  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781805.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Ochs, H. T., 1978: Moment-conserving techniques for warm cloud microphysical computations. Part II: Model testing and results. J. Atmos. Sci., 35, 19591973.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 18011815.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2005: Anvil glaciation in a deep cumulus updraft over Florida simulated with an explicit microphysics model. I: The impact of various nucleation processes. Quart. J. Roy. Meteor. Soc., 131, 20192046.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., 1993: A study of the broadening of droplet size distributions in cumuli. J. Atmos. Sci., 50, 22302244.

  • Politovich, M. K., and W. A. Cooper, 1998: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensational nuclei (CCN). Atmos. Chem. Phys., 9, 70677080.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., M. Pinsky A. Khain, and C. Erlick, 2003: Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds. Atmos. Res., 66, 4364.

    • Search Google Scholar
    • Export Citation
  • Song, N., and J. Marwitz, 1989: A numerical study of the warm rain process in orographic clouds. J. Atmos. Sci., 46, 34793486.

  • Squires, P., 1952: The growth of cloud drops by condensation. I. General characteristics. Aust. J. Sci. Res., 5, 5986.

  • Straub, W., K. D. Beheng, A. Seifert, J. Schlottke, and B. Weigang, 2010: Numerical investigation of collision-induced breakup of raindrops. Part II: Parameterizations of coalescence efficiencies and fragment size distributions. J. Atmos. Sci., 67, 576587.

    • Search Google Scholar
    • Export Citation
  • Su, C.-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1969a: The microstructure of cumulus cloud. Part I: General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1969b: The microstructure of cumulus cloud. Part II: The effect of droplet size distribution of the cloud nucleus spectrum and updraft velocity. J. Atmos. Sci., 26, 12721282.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1973: The microstructure of cumulus cloud. Part IV: The effect on the droplet spectrum of mixing between cloud and environment. J. Atmos. Sci., 30, 256261.

    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. Rasmussen, I. Geresdi, and Z. Pan, 2010: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysical scheme. J. Atmos. Sci., 67, 33363354.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 921 246 27
PDF Downloads 751 181 13