A Transilient Matrix for Moist Convection

David M. Romps Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
and
Zhiming Kuang Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Zhiming Kuang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z′ for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, 377 McCone Hall, University of California, Berkeley, Berkeley, CA 94720. E-mail: romps@berkeley.edu

Abstract

A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z′ for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, 377 McCone Hall, University of California, Berkeley, Berkeley, CA 94720. E-mail: romps@berkeley.edu
Save
  • Bluestein, H., and M. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M., B. Klimowski, and J. W. Zeitler, 2002: The importance of parcel choice and the measure of vertical wind shear in evaluating the convective environment. Extended Abstracts, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., P8.2. [Available online at http://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47319.htm.]

    • Search Google Scholar
    • Export Citation
  • Cheinet, S., 2003: A multiple mass-flux parameterization for the surface-generated convection. Part I: Dry plumes. J. Atmos. Sci., 60, 23132327.

    • Search Google Scholar
    • Export Citation
  • Clough, S., M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244.

    • Search Google Scholar
    • Export Citation
  • Craven, J., R. Jewell, and H. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890.

    • Search Google Scholar
    • Export Citation
  • Crum, T., R. Stull, and E. Eloranta, 1987: Coincident lidar and aircraft observations of entrainment into thermals and mixed layers. J. Climate Appl. Meteor., 26, 774788.

    • Search Google Scholar
    • Export Citation
  • Doswell, C., and E. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., U. Schumann, and R. Stull, 1989: Nonlocal turbulent mixing in the convective boundary layer evaluated from large-eddy simulation. J. Atmos. Sci., 46, 21782207.

    • Search Google Scholar
    • Export Citation
  • Heus, T., G. van Dijk, H. Jonker, and H. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597.

    • Search Google Scholar
    • Export Citation
  • Iacono, M., J. Delamere, E. Mlawer, M. Shephard, S. Clough, and W. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D., and R. Houze Jr., 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 12091229.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., Q. Fu, K. Liou, and H. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281287.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2010: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves. J. Atmos. Sci., 67, 941962.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909.

    • Search Google Scholar
    • Export Citation
  • Larson, V., 1999: The relationship between the transilient matrix and the Green’s function for the advection-diffusion equation. J. Atmos. Sci., 56, 24472453.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1993: Positivity-preserving numerical schemes for multidimensional advection. NASA Tech. Rep. 106055, 62 pp.

    • Search Google Scholar
    • Export Citation
  • Lin, C., 1999: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part I: Cloud root properties. J. Atmos. Sci., 56, 37243735.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. Farley, and H. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lord, S., H. Willoughby, and J. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., and R. Houze, 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118, 927963.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., M. LeMone, M. Khairoutdinov, S. Krueger, P. Bogenschutz, and D. Randall, 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst., 1 (16), doi:10.3894/JAMES.2009.1.16.

    • Search Google Scholar
    • Export Citation
  • Neggers, J., A. Roel, M. Köhler, M. Beljaars, and C. Anton, 2009: A dual mass flux framework for boundary layer convection. Part I: Transport. J. Atmos. Sci., 66, 14651487.

    • Search Google Scholar
    • Export Citation
  • Pagen, D., 1995: Hang Gliding Training Manual. Sport Aviation Publications, 380 pp.

  • Raymond, D., 1995: Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52, 39453959.

  • Reichmann, H., 1978: Cross-Country Soaring. Thompson Publishing, 150 pp.

  • Rennó, N., and E. Williams, 1995: Quasi-Lagrangian measurements in convective boundary layer plumes and their implications for the calculation of CAPE. Mon. Wea. Rev., 123, 27332742.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799.

  • Romps, D. M., and Z. Kuang, 2010a: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010b: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666.

  • Sánchez, O., D. Raymond, L. Libersky, and A. Petschek, 1989: The development of thermals from rest. J. Atmos. Sci., 46, 22802292.

  • Siebesma, A., P. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1997: Thermodynamics of moist and cloudy air. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Springer, 29–58.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., 1999: Diffusion versus nonlocal models of stratospheric mixing, in theory and practice. J. Atmos. Sci., 56, 25712584.

  • Stull, R. B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41, 33513367.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1993: Review of non-local mixing in turbulent atmospheres: Transilient turbulence theory. Bound.-Layer Meteor., 62, 2196.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., and E. W. Eloranta, 1985: A case study of the accuracy of routine fair-weather cloud-base reports. Natl. Wea. Dig., 10, 1924.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., 1996: Multidimensional flux-limited advection schemes. J. Comput. Phys., 123, 7483.

  • Wallington, C. E., 1961: Meteorology for Glider Pilots. John Murray Ltd., 284 pp.

  • Wilde, N., R. Stull, and E. Eloranta, 1985: The LCL zone and cumulus onset. J. Climate Appl. Meteor., 24, 640657.

  • Williams, E., and N. Renno, 1993: An analysis of the conditional instability of the tropical atmosphere. Mon. Wea. Rev., 121, 2136.

  • Wilson, R., 2004: Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: A review. Ann. Geophys., 22, 38693887.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 96 5
PDF Downloads 324 164 5