On the Wave Spectrum Generated by Tropical Heating

David A. Ortland NorthWest Research Associates, Redmond, Washington

Search for other papers by David A. Ortland in
Current site
Google Scholar
PubMed
Close
,
M. Joan Alexander Colorado Research Associates Division, NWRA, Boulder, Colorado

Search for other papers by M. Joan Alexander in
Current site
Google Scholar
PubMed
Close
, and
Alison W. Grimsdell Colorado Research Associates Division, NWRA, Boulder, Colorado

Search for other papers by Alison W. Grimsdell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Convective heating profiles are computed from one month of rainfall rate and cloud-top height measurements using global Tropical Rainfall Measuring Mission and infrared cloud-top products. Estimates of the tropical wave response to this heating and the mean flow forcing by the waves are calculated using linear and nonlinear models. With a spectral resolution up to zonal wavenumber 80 and frequency up to 4 cpd, the model produces 50%–70% of the zonal wind acceleration required to drive a quasi-biennial oscillation (QBO). The sensitivity of the wave spectrum to the assumed shape of the heating profile, to the mean wind and temperature structure of the tropical troposphere, and to the type of model used is also examined. The redness of the heating spectrum implies that the heating strongly projects onto Hough modes with small equivalent depth. Nonlinear models produce wave flux significantly smaller than linear models due to what appear to be dynamical processes that limit the wave amplitude. Both nonlinearity and mean winds in the lower stratosphere are effective in reducing the Rossby wave response to heating relative to the response in a linear model for a mean state at rest.

Corresponding author address: David Ortland, NorthWest Research Associates, 4118 148th Ave. NE, Redmond, WA 98052. E-mail: ortland@nwra.com

Abstract

Convective heating profiles are computed from one month of rainfall rate and cloud-top height measurements using global Tropical Rainfall Measuring Mission and infrared cloud-top products. Estimates of the tropical wave response to this heating and the mean flow forcing by the waves are calculated using linear and nonlinear models. With a spectral resolution up to zonal wavenumber 80 and frequency up to 4 cpd, the model produces 50%–70% of the zonal wind acceleration required to drive a quasi-biennial oscillation (QBO). The sensitivity of the wave spectrum to the assumed shape of the heating profile, to the mean wind and temperature structure of the tropical troposphere, and to the type of model used is also examined. The redness of the heating spectrum implies that the heating strongly projects onto Hough modes with small equivalent depth. Nonlinear models produce wave flux significantly smaller than linear models due to what appear to be dynamical processes that limit the wave amplitude. Both nonlinearity and mean winds in the lower stratosphere are effective in reducing the Rossby wave response to heating relative to the response in a linear model for a mean state at rest.

Corresponding author address: David Ortland, NorthWest Research Associates, 4118 148th Ave. NE, Redmond, WA 98052. E-mail: ortland@nwra.com
Save
  • Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, doi:10.1029/2010JD014782.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51, 37913806.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 (D22), 26 05326 076.

  • Garcia, R. R., and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44, 499530.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901.

    • Search Google Scholar
    • Export Citation
  • Grimsdel, A. W., M. J. Alexander, P. T. May, and L. Hoffmann, 2010: Model study of waves generated by convection with direct validation via satellite. J. Atmos. Sci., 67, 16171631.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., 2002: Mesoscale variability of tropical precipitation: Validation of satellite estimates of wave forcing using TOGA COARE radar data. J. Atmos. Sci., 59, 24282437.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1996: Excitation of transient waves by localized episodic heating in the tropics and their propagation into the middle atmosphere. J. Meteor. Soc. Japan, 74, 189210.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1998: Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55, 502526.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., and K. Hamilton, 1993: Middle atmospheric traveling waves forced by latent and convective heating. J. Atmos. Sci., 50, 21802200.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., 2005: Generalized Hough modes: The structure of damped global-scale waves propagating on a mean flow with horizontal and vertical shear. J. Atmos. Sci., 62, 26742683.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., and M. J. Alexander, 2011: Solutions to the vertical structure equation for simple models of the tropical troposphere. J. Atmos. Sci., 68, 20612072.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and R. R. Garcia, 2000: The excitation of equatorial waves by deep convection in the NCAR Community Climate Model (CCM3). J. Atmos. Sci., 57, 34613487.

    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., M. J. Alexander, and D. A. Ortland, 2011: Equatorial waves in the upper troposphere and lower stratosphere forced by latent heating estimated from TRMM rain rates. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498.

    • Search Google Scholar
    • Export Citation
  • Scaife, A., N. Butchart, C. D. Warner, D. Stainforth, and W. Norton, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27, 34813484.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraukunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61, 13411358.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 45 2
PDF Downloads 103 24 1