How Different Calculations of the Refractive Index Affect Estimates of the Radiative Forcing Efficiency of Ammonium Sulfate Aerosols

Carynelisa Erlick Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Carynelisa Erlick in
Current site
Google Scholar
PubMed
Close
,
Jonathan P. D. Abbatt Department of Chemistry, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Jonathan P. D. Abbatt in
Current site
Google Scholar
PubMed
Close
, and
Yinon Rudich Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel

Search for other papers by Yinon Rudich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Calculations of the radiative properties of hydrated ammonium sulfate (AS) aerosols often employ the conventional volume mixing rule, in which the refractive indices of AS and water are linearly averaged, weighted by their respective volume fractions in solution, and the real part of the refractive index of pure AS is taken to be 1.52–1.55, based on measurements of dry crystalline AS. However, there are significant differences between the refractive indices of AS–water solutions calculated using the conventional volume mixing rule and empirically derived refractive indices. The authors use a simple model for calculating the direct solar radiative forcing efficiency (RFE; radiative forcing divided by optical depth) of an optically thin layer of aerosols to investigate the magnitude of these differences. The difference between the conventional volume mixing rule and empirically derived refractive indices amounts to a modest difference in the direct solar RFE of AS aerosols at the top of the atmosphere at 0.550-μm wavelength and at relative humidities of 37%–99.9%. Without black carbon, the difference in RFE is up to −0.42 W m−2 for relative humidities less than around 66% and up to 0.25 W m−2 for relative humidities greater than 66%, whereas with 2% black carbon by volume, the range of difference in RFE is up to −0.59 W m−2 for relative humidities less than 66% and up to 0.30 W m−2 for relative humidities greater than 66%. Although modest, this difference in RFE may become important when investigating regional aerosol forcing in areas with a high concentration of urban and industrial pollution.

Corresponding author address: Dr. Carynelisa Erlick, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. E-mail: caryn@vms.huji.ac.il

Abstract

Calculations of the radiative properties of hydrated ammonium sulfate (AS) aerosols often employ the conventional volume mixing rule, in which the refractive indices of AS and water are linearly averaged, weighted by their respective volume fractions in solution, and the real part of the refractive index of pure AS is taken to be 1.52–1.55, based on measurements of dry crystalline AS. However, there are significant differences between the refractive indices of AS–water solutions calculated using the conventional volume mixing rule and empirically derived refractive indices. The authors use a simple model for calculating the direct solar radiative forcing efficiency (RFE; radiative forcing divided by optical depth) of an optically thin layer of aerosols to investigate the magnitude of these differences. The difference between the conventional volume mixing rule and empirically derived refractive indices amounts to a modest difference in the direct solar RFE of AS aerosols at the top of the atmosphere at 0.550-μm wavelength and at relative humidities of 37%–99.9%. Without black carbon, the difference in RFE is up to −0.42 W m−2 for relative humidities less than around 66% and up to 0.25 W m−2 for relative humidities greater than 66%, whereas with 2% black carbon by volume, the range of difference in RFE is up to −0.59 W m−2 for relative humidities less than 66% and up to 0.30 W m−2 for relative humidities greater than 66%. Although modest, this difference in RFE may become important when investigating regional aerosol forcing in areas with a high concentration of urban and industrial pollution.

Corresponding author address: Dr. Carynelisa Erlick, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. E-mail: caryn@vms.huji.ac.il
Save
  • Abo Riziq, A., C. Erlick, E. Dinar, and Y. Rudich, 2007: Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy. Atmos. Chem. Phys., 7, 15231536.

    • Search Google Scholar
    • Export Citation
  • Adler, G., A. Abo Riziq, C. Erlick, and Y. Rudich, 2010: Effect of intrinsic organic carbon on the optical properties of fresh diesel soot. Proc. Natl. Acad. Sci. USA, 107, 66996704.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., D. S. Covert, J. D. Wheeler, J. M. Harris, K. D. Perry, B. E. Trost, D. J. Jaffe, and J. A. Ogren, 1999: Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific Northwest. J. Geophys. Res., 104 (D21), 26 79326 807.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., and Coauthors, 2006: Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and north Indian Oceans: Estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmos. Chem. Phys., 6, 16571732.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 530 pp.

  • Braban, C. F., and J. P. D. Abbatt, 2004: A study of the phase transition behavior of internally mixed ammonium sulfate–malonic acid aerosols. Atmos. Chem. Phys., 4, 14511459.

    • Search Google Scholar
    • Export Citation
  • Brocos, P., Á. Piñeiro, R. Bravo, and A. Amigo, 2003: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: Concepts and correlations. Phys. Chem. Chem. Phys., 5, 550557.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43A, 152163.

    • Search Google Scholar
    • Export Citation
  • Che, H., and Coauthors, 2009: Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res., 114, D03206, doi:10.1029/2008JD011030.

    • Search Google Scholar
    • Export Citation
  • Chýlek, P., G. Videen, D. J. W. Geldart, J. S. Dobbie, and H. C. W. Tso, 2000: Effective medium approximations for heterogeneous particles. Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Eds., Academic Press, 273–308.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., P. Koepka, and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Dinar, E., A. Abo Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich, 2008: The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discuss., 137, 279295.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519.

    • Search Google Scholar
    • Export Citation
  • Erlick, C., 2006: Effective refractive indices of water and sulfate drops containing absorbing inclusions. J. Atmos. Sci., 63, 754763.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Gosse, S. F., M. Wang, D. Labrie, and P. Chylek, 1997: Imaginary part of the refractive index of sulfates and nitrates in the 0.7–2.6-μm spectral region. Appl. Opt., 36, 36223634.

    • Search Google Scholar
    • Export Citation
  • Hallquist, M., and Coauthors, 2009: The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys., 9, 51555236.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett., 22, 603606.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., D. L. Roberts, A. Slingo, J. M. Edwards, and K. P. Shine, 1997: General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Climate, 10, 15621577.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106, 15511568.

    • Search Google Scholar
    • Export Citation
  • Liu, X., J. E. Penner, B. Das, D. Bergmann, J. M. Rodriguez, S. Strahan, M. Wang, and Y. Feng, 2007: Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. J. Geophys. Res., 112, D11212, doi:10.1029/2006JD008216.

    • Search Google Scholar
    • Export Citation
  • Marcolli, C., and U. K. Krieger, 2006: Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. J. Phys. Chem., 110A, 18811893.

    • Search Google Scholar
    • Export Citation
  • Marcolli, C., B. P. Luo, and T. Peter, 2004: Mixing of the organic aerosol fractions: Liquids as the thermodynamically stable phases. J. Phys. Chem., 108A, 22162224.

    • Search Google Scholar
    • Export Citation
  • Martin, S. T., J. C. Schlenker, A. Malinowski, H. M. Hung, and Y. Rudich, 2003: Crystallization of atmospheric sulfate–nitrate–ammonium particles. Geophys. Res. Lett., 30, 2102, doi:10.1029/2003GL017930.

    • Search Google Scholar
    • Export Citation
  • Meyer, N. K., and Coauthors, 2009: Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles. Atmos. Chem. Phys., 9, 721732.

    • Search Google Scholar
    • Export Citation
  • Mikhailov, E., S. Vlasenko, S. T. Martin, T. Koop, and U. Pöschl, 2009: Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions, and kinetic limitations. Atmos. Chem. Phys., 9, 94919522.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and L. M. Russell, 2002: Thermodynamic equilibrium of organic-electrolyte mixtures in aerosol particles. AIChE J., 48, 13311348.

    • Search Google Scholar
    • Export Citation
  • Pettersson, A., E. R. Lovejoy, C. A. Brock, S. S. Brown, and A. R. Ravishankara, 2004: Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy. J. Aerosol Sci., 35, 9951011.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., L. M. Russell, and V. Ramaswamy, 2004: Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophys. Res. Lett., 31, L16108, doi:10.1029/2004GL020628.

    • Search Google Scholar
    • Export Citation
  • Schlenker, J. C., A. Malinowski, S. T. Martin, H. M. Hung, and Y. Rudich, 2004: Crystals formed at 293 K by aqueous sulfate–nitrate–ammonium–proton aerosol particles. J. Phys. Chem., 108A, 93759385.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192.

    • Search Google Scholar
    • Export Citation
  • Sihvola, A., 1996: Electromagnetic Mixing Formulas and Applications. The Institution of Electrical Engineers, 284 pp.

  • Stelson, A. W., 1990: Urban aerosol refractive index prediction by partial molar refraction approach. Environ. Sci. Technol., 24, 16761679.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., 1996: Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res., 101 (D14), 19 24519 250.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., and H. R. Munkelwitz, 1991: Simultaneous determination of refractive index and density of an evaporating aqueous solution droplet. Aerosol Sci. Technol., 15, 201207.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., and H. R. Munkelwitz, 1994: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res., 99, 18 80118 808.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., K. H. Fung, D. G. Imre, and H. R. Munkelwitz, 1995: Phase transformations and metastability of hygroscopic microparticles. Aerosol Sci. Technol., 23, 443453.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., H. B. Pollack, and B. N. Khare, 1976: The optical constants of several atmospheric aerosol species: Ammonium sulfate, aluminum oxide, and sodium chloride. J. Geophys. Res., 81, 57335748.

    • Search Google Scholar
    • Export Citation
  • Vinoj, V., S. K. Satheesh, S. Suresh Babu, and K. Krishna Moorthy, 2004: Large aerosol optical depths observed at an urban location in southern India associated with rain-deficit summer monsoon season. Ann. Geophys., 22, 30733077.

    • Search Google Scholar
    • Export Citation
  • Wang, J., D. J. Jacob, and S. T. Martin, 2008: Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions. J. Geophys. Res., 113, D11206, doi:10.1029/2007JD009368.

    • Search Google Scholar
    • Export Citation
  • Weast, R. C., M. J. Astle, and W. H. Beyer, Eds., 1985: CRC Handbook of Chemistry and Physics. 66th ed. CRC Press, 2363 pp.

  • Weingartner, E., M. Gysel, and U. Baltensperger, 2002: Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: Setup and first applications. Environ. Sci. Technol., 36, 5562.

    • Search Google Scholar
    • Export Citation
  • Whitby, K. T., 1984: Physical and optical behavior of sulfate-nitrate aerosols in equilibrium with atmospheric water vapor, ammonia and nitric acid. Hygroscopic Aerosols, L. H. Ruhnke and A. Deepak, Eds., A. Deepak, 45–63.

    • Search Google Scholar
    • Export Citation
  • Winkler, P., and C. Junge, 1972: The growth of atmospheric aerosol particles as a function of the relative humidity. I. Method and measurements at different locations. J. Rech. Atmos., 6, 617638.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., and G. W. Grams, 1976: The backscattered fraction in two-stream approximations. J. Atmos. Sci., 33, 24402451.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1070 382 33
PDF Downloads 645 148 9