Temperature and Water Vapor Variance Scaling in Global Models: Comparisons to Satellite and Aircraft Data

B. H. Kahn Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by B. H. Kahn in
Current site
Google Scholar
PubMed
Close
,
J. Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by J. Teixeira in
Current site
Google Scholar
PubMed
Close
,
E. J. Fetzer Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by E. J. Fetzer in
Current site
Google Scholar
PubMed
Close
,
A. Gettelman National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. Gettelman in
Current site
Google Scholar
PubMed
Close
,
S. M. Hristova-Veleva Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by S. M. Hristova-Veleva in
Current site
Google Scholar
PubMed
Close
,
X. Huang Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by X. Huang in
Current site
Google Scholar
PubMed
Close
,
A. K. Kochanski Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by A. K. Kochanski in
Current site
Google Scholar
PubMed
Close
,
M. Köhler Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by M. Köhler in
Current site
Google Scholar
PubMed
Close
,
S. K. Krueger Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Search for other papers by S. K. Krueger in
Current site
Google Scholar
PubMed
Close
,
R. Wood Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by R. Wood in
Current site
Google Scholar
PubMed
Close
, and
M. Zhao Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by M. Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of the scale dependence of height-resolved temperature T and water vapor q variability are valuable for improved subgrid-scale climate model parameterizations and model evaluation. Variance spectral benchmarks for T and q obtained from the Atmospheric Infrared Sounder (AIRS) are compared to those generated by state-of-the-art numerical weather prediction “analyses” and “free-running” climate model simulations with spatial resolution comparable to AIRS. The T and q spectra from both types of models are generally too steep, with small-scale variance up to several factors smaller than AIRS. However, the two model analyses more closely resemble AIRS than the two free-running model simulations. Scaling exponents obtained for AIRS column water vapor (CWV) and height-resolved layers of q are also compared to the superparameterized Community Atmospheric Model (SP-CAM), highlighting large differences in the magnitude of CWV variance and the relative flatness of height-resolved q scaling in SP-CAM. Height-resolved q spectra obtained from aircraft observations during the Variability of the American Monsoon Systems Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) demonstrate changes in scaling exponents that depend on the observations’ proximity to the base of the subsidence inversion with scale breaks that occur at approximately the dominant cloud scale (~10–30 km). This suggests that finer spatial resolution requirements must be considered for future satellite observations of T and q than those currently planned for infrared and microwave satellite sounders.

Corresponding author address: Brian H. Kahn, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 169-237, Pasadena, CA 91109. E-mail: brian.h.kahn@jpl.nasa.gov

Abstract

Observations of the scale dependence of height-resolved temperature T and water vapor q variability are valuable for improved subgrid-scale climate model parameterizations and model evaluation. Variance spectral benchmarks for T and q obtained from the Atmospheric Infrared Sounder (AIRS) are compared to those generated by state-of-the-art numerical weather prediction “analyses” and “free-running” climate model simulations with spatial resolution comparable to AIRS. The T and q spectra from both types of models are generally too steep, with small-scale variance up to several factors smaller than AIRS. However, the two model analyses more closely resemble AIRS than the two free-running model simulations. Scaling exponents obtained for AIRS column water vapor (CWV) and height-resolved layers of q are also compared to the superparameterized Community Atmospheric Model (SP-CAM), highlighting large differences in the magnitude of CWV variance and the relative flatness of height-resolved q scaling in SP-CAM. Height-resolved q spectra obtained from aircraft observations during the Variability of the American Monsoon Systems Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) demonstrate changes in scaling exponents that depend on the observations’ proximity to the base of the subsidence inversion with scale breaks that occur at approximately the dominant cloud scale (~10–30 km). This suggests that finer spatial resolution requirements must be considered for future satellite observations of T and q than those currently planned for infrared and microwave satellite sounders.

Corresponding author address: Brian H. Kahn, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 169-237, Pasadena, CA 91109. E-mail: brian.h.kahn@jpl.nasa.gov
Save
  • Anderson, J. L., and Coauthors, 2004: The New GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., 2011: Improving the representation of turbulence and clouds in cloud resolving models and general circulation models. Ph.D. dissertation, University of Utah, 320 pp.

  • Bony, S., and J. L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485.

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., R. E. Newell, and G. W. Sachse, 2000: Anomalous scaling of mesoscale tropospheric humidity fluctuations. Geophys. Res. Lett., 27, 377380.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and R. Kershaw, 1999: Estimating the subgrid variance of saturation, and its parametrization for use in a GCM cloud scheme. Quart. J. Roy. Meteor. Soc., 125, 30573076.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., A. Marshak, W. Wiscombe, and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., and K. Gierens, 2008: Instantaneous fluctuations of temperature and moisture in the upper troposphere and tropopause region. Part 2: Structure functions and intermittency. Meteor. Z., 17, 323337.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., B. H. Lambrigtsen, A. Eldering, H. H. Aumann, and M. T. Chahine, 2006: Biases in total precipitable water vapor climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer. J. Geophys. Res., 111, D09S16, doi:10.1029/2005JD006598.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and R. Sharman, 2010: Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. J. Appl. Meteor. Climatol., 49, 11491169.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parameterizations. Quart. J. Roy. Meteor. Soc., 136, 11451160, doi:10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and J. Teixeira, 2009: A global climatology of temperature and water vapor variance scaling from the Atmospheric Infrared Sounder. J. Climate, 22, 55585576.

    • Search Google Scholar
    • Export Citation
  • Kawai, H., and J. Teixeira, 2010: Probability density functions of liquid water path and cloud amount of marine boundary layer clouds: Geographical and seasonal variations and controlling meteorological factors. J. Climate, 23, 20792092.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., K. Hamilton, and J. D. Mahlman, 1999: Simulation of the k−5/3 mesoscale spectral regime in the GFDL SKYHI general circulation model. Geophys. Res. Lett., 26, 843846.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010: An improved PDF cloud scheme for climate simulations. Quart. J. Roy. Meteor. Soc., 136, 15831597, doi:10.1002/qj.660.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2009: Two comments on the surface quasigeostrophic model for the atmospheric energy spectrum. J. Atmos. Sci., 66, 10691072.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., K. K. Tung, G. D. Nastrom, J. Y. N. Cho, and K. S. Gage, 2010: Comment on “Reinterpreting aircraft measurement in anisotropic scaling turbulence” by Lovejoy et al. (2009). Atmos. Chem. Phys., 10, 14011402.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., A. F. Tuck, D. Schertzer, and S. J. Hovde, 2009: Reinterpreting aircraft measurements in anisotropic scaling turbulence. Atmos. Chem. Phys., 9, 50075025.

    • Search Google Scholar
    • Export Citation
  • Maddy, E. S., and C. D. Barnet, 2008: Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Trans. Geosci. Remote Sens., 46, 23752384.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., N. Beagley, and T. P. Ackerman, 2009: Evaluation of hydrometeor occurrence profiles in the Multiscale Modeling Framework climate model using atmospheric classification. J. Climate, 22, 45574573.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., J. C. McWilliams, R. Rotunno, P. P. Sullivan, and J. Weil, 2004: Investigating 2D modeling of atmospheric convection in the PBL. J. Atmos. Sci., 61, 889903.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., W. H. Jasperson, and K. S. Gage, 1986: Horizontal spectra of atmospheric tracers measured during the global atmospheric sampling program. J. Geophys. Res., 91, 13 20113 209.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., T. P. Barnett, E. J. Fetzer, and P. J. Gleckler, 2006: Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system. Geophys. Res. Lett., 33, L21701, doi:10.1029/2006GL027060.

    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., W. D. Collins, and A. R. Desai, 2010: Variance scaling in water vapor measurements from a tall tower. Extended Abstracts, 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., P1.77. [Available online at http://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_171839.htm.]

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., D. B. Coleman, N. Mahowald, D. L. Williamson, S.-J. Lin, B. A. Boville, and P. Hess, 2006: Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Climate, 19, 22432266.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. TM-2008-104606, Vol. 27, 118 pp.

    • Search Google Scholar
    • Export Citation
  • Rood, R. B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71100.

    • Search Google Scholar
    • Export Citation
  • Schmitt, K. F., C. A. Friehe, and C. H. Gibson, 1979: Structure of marine surface layer turbulence. J. Atmos. Sci., 36, 602618.

  • Seiffert, R., and J.-S. von Storch, 2008: Impact of atmospheric small-scale fluctuations on climate sensitivity. Geophys. Res. Lett., 35, L10704, doi:10.1029/2008GL033483.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Smith, K. S., and R. Tulloch, 2009: Reply. J. Atmos. Sci., 66, 10731076.

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, J. M. Blaisdell, L. Iredell, F. Keita, L. Kouvaris, G. Molnar, and M. Chahine, 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover. J. Geophys. Res., 111, D09S17, doi:10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942.

    • Search Google Scholar
    • Export Citation
  • Tuck, A. F., 2010: From molecules to meteorology via turbulent scale invariance. Quart. J. Roy. Meteor. Soc., 136, 11251144, doi:10.1002/qj.644.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835.

    • Search Google Scholar
    • Export Citation
  • Wang, H., G. Feingold, R. Wood, and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in southeast Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362.

    • Search Google Scholar
    • Export Citation
  • Willett, M. R., P. Bechtold, D. L. Williamson, J. C. Petch, S. F. Milton, and S. J. Woolnough, 2008: Modeling suppressed and active convection: Comparisons between three global atmospheric models. Quart. J. Roy. Meteor. Soc., 134, 18811896, doi:10.1002/qj.317.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B, 241269.

  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, in press.

  • Wood, R., P. R. Field, and W. R. Cotton, 2002: Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmos. Res., 65, 109128.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Spectral characteristics of turbulence in the hurricane boundary layer over the ocean between the outer rain bands. Quart. J. Roy Meteor. Soc., 136, 918926, doi:10.1002/qj.610.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1449 310 20
PDF Downloads 271 62 1