Mesoscale Controls on the Mountainside Snow Line

Justin R. Minder Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Justin R. Minder in
Current site
Google Scholar
PubMed
Close
,
Dale R. Durran Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dale R. Durran in
Current site
Google Scholar
PubMed
Close
, and
Gerard H. Roe Department of Earth and Space Sciences, University of Washington, Seattle, Washington

Search for other papers by Gerard H. Roe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations show that on a mountainside the boundary between snow and rain, the snow line, is often located at an elevation hundreds of meters below its elevation in the free air upwind. The processes responsible for this mesoscale lowering of the snow line are examined in semi-idealized simulations with a mesoscale numerical model and in simpler theoretical models. Spatial variations in latent cooling from melting precipitation, in adiabatic cooling from vertical motion, and in the melting distance of frozen hydrometeors are all shown to make important contributions. The magnitude of the snow line drop, and the relative importance of the responsible processes, depends on properties of the incoming flow and terrain geometry. Results suggest that the depression of the snow line increases with increasing temperature, a relationship that, if present in nature, could act to buffer mountain hydroclimates against the impacts of climate warming. The simulated melting distance, and hence the snow line, depends substantially on the choice of microphysical parameterization, pointing to an important source of uncertainty in simulations of mountain snowfall.

Current affiliation: Department of Geology and Geophysics, Yale University, New Haven, Connecticut.

Corresponding author address: Justin R. Minder, Department of Geology and Geophysics, Box 208109, Yale University, New Haven, CT 06520–8109. E-mail: justin.minder@yale.edu

Abstract

Observations show that on a mountainside the boundary between snow and rain, the snow line, is often located at an elevation hundreds of meters below its elevation in the free air upwind. The processes responsible for this mesoscale lowering of the snow line are examined in semi-idealized simulations with a mesoscale numerical model and in simpler theoretical models. Spatial variations in latent cooling from melting precipitation, in adiabatic cooling from vertical motion, and in the melting distance of frozen hydrometeors are all shown to make important contributions. The magnitude of the snow line drop, and the relative importance of the responsible processes, depends on properties of the incoming flow and terrain geometry. Results suggest that the depression of the snow line increases with increasing temperature, a relationship that, if present in nature, could act to buffer mountain hydroclimates against the impacts of climate warming. The simulated melting distance, and hence the snow line, depends substantially on the choice of microphysical parameterization, pointing to an important source of uncertainty in simulations of mountain snowfall.

Current affiliation: Department of Geology and Geophysics, Yale University, New Haven, Connecticut.

Corresponding author address: Justin R. Minder, Department of Geology and Geophysics, Box 208109, Yale University, New Haven, CT 06520–8109. E-mail: justin.minder@yale.edu
Save
  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. 19, 150 pp.

  • Arendt, A., J. Walsh, and W. Harrison, 2009: Changes of glaciers and climate in northwestern North America during the late twentieth century. J. Climate, 22, 41174134.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Barthazy, E., and R. Schefold, 2006: Fall velocity of snowflakes of different riming degree and crystal types. Atmos. Res., 82, 391398, doi:10.1016/j.atmosres.2005.12.009.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161.

  • Bousquet, O., and B. F. Smull, 2003: Observations and impacts of upstream blocking during a widespread orographic precipitation event. Quart. J. Roy. Meteor. Soc., 129, 391409, doi:10.1256/qj.02.49.

    • Search Google Scholar
    • Export Citation
  • Casola, J., L. Cuo, B. Livneh, D. Lettenmaier, M. Stoelinga, P. Mote, and J. Wallace, 2009: Assessing the impacts of global warming on snowpack in the Washington Cascades. J. Climate, 22, 27582772.

    • Search Google Scholar
    • Export Citation
  • Chen, S. H., and W. Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Y. G. Zeng, 2004a: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part I: The Sierra 1986 event. Mon. Wea. Rev., 132, 27802801.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and Y. G. Zeng, 2004b: Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part II: Impact of barrier width and freezing level. Mon. Wea. Rev., 132, 28022815.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., M. F. Garvert, J. B. Wolfe, C. F. Mass, and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 35353558.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., J. K. Eischeid, C. Duncan, and R. S. Bradley, 2003: Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Climatic Change, 59, 3352.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt–Väisälä frequency. J. Atmos. Sci., 39, 21522158.

  • Elsner, M., and Coauthors, 2010: Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102, 225260, doi:10.1007/s10584-010-9855-0.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2001: Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci., 58, 10511065.

    • Search Google Scholar
    • Export Citation
  • Findeisen, W., 1940: The formation of the 0°C isothermal layer in fractocumulus and nimbostratus. Meteor. Z., 57, 4954.

  • Galewsky, J., 2008: Orographic clouds in terrain-blocked flows: An idealized modeling study. J. Atmos. Sci., 65, 34603478, doi:10.1175/2008JAS2435.1.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., C. P. Woods, B. A. Colle, C. F. Mass, P. V. Hobbs, M. T. Stoelinga, and J. B. Wolfe, 2005: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62, 35203534.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., R. K. Vellore, and A. W. Huggins, 2005: Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution. Mon. Wea. Rev., 133, 28342859.

    • Search Google Scholar
    • Export Citation
  • Hahn, R., and C. Mass, 2009: The impact of positive-definite moisture advection and low-level moisture flux bias over orography. Mon. Wea. Rev., 137, 30553071.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 1999: Effects of climate change on hydrology and water resources in the Columbia River basin. J. Amer. Water Resour. Assoc., 35, 15971623.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 2007: Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res., 43, W06427, doi:10.1029/2006WR005099.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., P. W. Mote, M. P. Clark, and D. P. Lettenmaier, 2005: Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Climate, 18, 45454561.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Houze, R., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Ikeda, K., and Coauthors, 2009: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477.

  • Jankov, I., J.-W. Bao, P. Neiman, P. Schultz, H. Yuan, and A. White, 2009: Evaluation and comparison of microphysical algorithms in ARW-WRF model simulations of atmospheric river events affecting the California coast. J. Hydrometeor., 10, 847870.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301316.

  • Jiang, Q., and R. B. Smith, 2003: Cloud timescales and orographic precipitation. J. Atmos. Sci., 60, 15431559.

  • Kingsmill, D., A. White, D. Gottas, and P. Neiman, 2008: Spatial variability of the snow level across the northern California Sierra Nevada. Extended Abstracts, 13th Conf. on Mountain Meteorology, Whistler, BC, Canada, Amer. Meteor. Soc., 6A.3. [Available online at http://ams.confex.com/ams/13MontMet17AP/techprogram/paper_140814.htm.]

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D., and R. Smith, 2008: Temperature and moist-stability effects on midlatitude orographic precipitation. Quart. J. Roy. Meteor. Soc., 134, 11831199, doi:10.1002/qj.274.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., J. Dudhia, and A. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004.

    • Search Google Scholar
    • Export Citation
  • Lalas, D. P., and F. Einaudi, 1973: On the stability of a moist atmosphere in the presence of a background wind. J. Atmos. Sci., 30, 795800.

    • Search Google Scholar
    • Export Citation
  • Lin, C. A., and R. E. Stewart, 1986: Mesoscale circulations initiated by melting snow. J. Geophys. Res., 91, 13 29913 302.

  • Lin, Y., and B. Colle, 2009: The 4–5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting model. Mon. Wea. Rev., 137, 13721392.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J., and P. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197.

  • Lundquist, J., P. Neiman, B. Martner, A. White, D. Gottas, and F. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1983: The kinematics of orographic airflow during Sierra storms. J. Atmos. Sci., 40, 12181227.

  • Marwitz, J. D., 1987: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure. J. Atmos. Sci., 44, 159173.

    • Search Google Scholar
    • Export Citation
  • Matsuo, T., and Y. Sasyo, 1981: Melting of snowflakes below the freezing level in the atmosphere. J. Meteor. Soc. Japan, 59, 1024.

  • Medina, S., B. F. Smull, R. A. Houze, and M. Steiner, 2005: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE. J. Atmos. Sci., 62, 35803598.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and R. Rotunno, 2005: Simulations of moist nearly neutral flow over a ridge. J. Atmos. Sci., 62, 14101427.

  • Miglietta, M. M., and R. Rotunno, 2006: Further results on moist nearly neutral flow over a ridge. J. Atmos. Sci., 63, 28812897.

  • Minder, J., 2010a: On the climatology of orographic precipitation in the mid-latitudes. Ph.D. thesis, University of Washington, 187 pp.

  • Minder, J., 2010b: The sensitivity of mountain snowpack accumulation to climate warming. J. Climate, 23, 26342650.

  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584591.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003.

  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and M. Weisman, 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391.

  • Steenburgh, W. J., C. F. Mass, and S. A. Ferguson, 1997: The influence of terrain-induced circulations on wintertime temperature and snow level in the Washington Cascades. Wea. Forecasting, 12, 208227.

    • Search Google Scholar
    • Export Citation
  • Steinacker, R., 1983: Diagnose und prognose der Schneefallgrenze (Diagnosing and predicting the snowline). Wetter Leben, 35, 8190.

  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237.

    • Search Google Scholar
    • Export Citation
  • Svoma, B., 2011: Trends in snow level elevation in the mountains of central Arizona. Int. J. Climatol., 31, 8794, doi:10.1002/joc.2062.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 35733592.

  • Tao, W. K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137, doi:10.1007/s00703-001-0594-7.

    • Search Google Scholar
    • Export Citation
  • Theriault, J. M., R. E. Stewart, J. A. Milbrandt, and M. K. Yau, 2006: On the simulation of winter precipitation types. J. Geophys. Res., 111, D18202, doi:10.1029/2005JD006665.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. Field, R. Rasmussen, and W. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., and G. Zängl, 2006: Cooling by melting precipitation in Alpine valleys: An idealized numerical modelling study. Quart. J. Roy. Meteor. Soc., 132, 14891508, doi:10.1256/qj.05.158.

    • Search Google Scholar
    • Export Citation
  • Wei, Y. L., and J. Marwitz, 1996: The Front Range blizzard of 1990. Part III: Numerical simulations of melting effects. Mon. Wea. Rev., 124, 24832496.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., and C. F. Mass, 2001: An evaluation of a high-resolution hydrometeorological modeling system for prediction of a cool-season flood event in a coastal mountainous watershed. J. Hydrometeor., 2, 161180.

    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687697.

    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, A. Henkel, P. Neiman, F. Ralph, and S. Gutman, 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 701 145 14
PDF Downloads 420 129 9