El Niño–Southern Oscillation in Tropical and Midlatitude Column Ozone

Jingqian Wang Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas

Search for other papers by Jingqian Wang in
Current site
Google Scholar
PubMed
Close
,
Steven Pawson Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

Search for other papers by Steven Pawson in
Current site
Google Scholar
PubMed
Close
,
Baijun Tian Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Baijun Tian in
Current site
Google Scholar
PubMed
Close
,
Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
Graduate Institute of Astronomy, National Central University, Jhongli, Taiwan
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Mao-Chang Liang in
Current site
Google Scholar
PubMed
Close
,
Run-Lie Shia Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Run-Lie Shia in
Current site
Google Scholar
PubMed
Close
,
Yuk L. Yung Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Yuk L. Yung in
Current site
Google Scholar
PubMed
Close
, and
Xun Jiang Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas

Search for other papers by Xun Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impacts of El Niño–Southern Oscillation (ENSO) on the tropical total column ozone, the tropical tropopause pressure, and the 3.5-yr ozone signal in the midlatitude total column ozone were examined using the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM). Observed monthly mean sea surface temperature and sea ice between 1951 and 2004 were used as boundary conditions for the model. Since the model includes no solar cycle, quasi-biennial oscillation, or volcanic forcing, the ENSO signal was found to dominate the tropical total column ozone variability. Principal component analysis was applied to the detrended, deseasonalized, and low-pass filtered model outputs. The first mode of model total column ozone captured 63.8% of the total variance. The spatial pattern of this mode was similar to that in Total Ozone Mapping Spectrometer (TOMS) observations. There was also a clear ENSO signal in the tropical tropopause pressure in the GEOS CCM, which is related to the ENSO signal in the total column ozone. The regression coefficient between the model total column ozone and the model tropopause pressure was 0.71 Dobson units (DU) hPa−1. The GEOS CCM was also used to investigate a possible mechanism for the 3.5-yr signal observed in the midlatitude total column ozone. The 3.5-yr signal in the GEOS CCM column ozone is similar to that in the observations, which suggests that a model with realistic ENSO can reproduce the 3.5-yr signal. Hence, it is likely that the 3.5-yr signal was caused by ENSO.

Corresponding author address: Jingqian Wang, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204. E-mail: jwang3@mail.uh.edu

Abstract

The impacts of El Niño–Southern Oscillation (ENSO) on the tropical total column ozone, the tropical tropopause pressure, and the 3.5-yr ozone signal in the midlatitude total column ozone were examined using the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM). Observed monthly mean sea surface temperature and sea ice between 1951 and 2004 were used as boundary conditions for the model. Since the model includes no solar cycle, quasi-biennial oscillation, or volcanic forcing, the ENSO signal was found to dominate the tropical total column ozone variability. Principal component analysis was applied to the detrended, deseasonalized, and low-pass filtered model outputs. The first mode of model total column ozone captured 63.8% of the total variance. The spatial pattern of this mode was similar to that in Total Ozone Mapping Spectrometer (TOMS) observations. There was also a clear ENSO signal in the tropical tropopause pressure in the GEOS CCM, which is related to the ENSO signal in the total column ozone. The regression coefficient between the model total column ozone and the model tropopause pressure was 0.71 Dobson units (DU) hPa−1. The GEOS CCM was also used to investigate a possible mechanism for the 3.5-yr signal observed in the midlatitude total column ozone. The 3.5-yr signal in the GEOS CCM column ozone is similar to that in the observations, which suggests that a model with realistic ENSO can reproduce the 3.5-yr signal. Hence, it is likely that the 3.5-yr signal was caused by ENSO.

Corresponding author address: Jingqian Wang, Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204. E-mail: jwang3@mail.uh.edu
Save
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229.

  • Bojkov, R. D., 1987: The 1983 and 1985 anomalies in ozone distribution in perspective. Mon. Wea. Rev., 115, 21872201.

  • Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys., 9, 89358948.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., M. S. Roulston, and Y. L. Yung, 2003: Temporal and spatial patterns of the interannual variability of total ozone in the tropics. J. Geophys. Res., 108, 4643, doi:10.1029/2001JD001504.

    • Search Google Scholar
    • Export Citation
  • Chandra, S., J. R. Ziemke, W. Min, and W. G. Read, 1998: Effects of 1997-1998 El Niño on tropospheric ozone and water vapor. Geophys. Res. Lett., 25, 38673870.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., M. R. Schoeberl, and R. B. Rood, 2003: Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model. J. Geophys. Res., 108, 4259, doi:10.1029/2002JD002696.

    • Search Google Scholar
    • Export Citation
  • Dunteman, G. H., 1989: Principal Components Analysis. International Education and Professional Publisher, 98 pp.

  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Free, M., and D. J. Seidel, 2009: Observed El Niño-Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114, D23108, doi:10.1029/2009JD012420.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., and G. C. Reid, 1987: Longitudinal variations in tropical tropopause properties in relation to tropical convection and El Niño–Southern Oscillation events. J. Geophys. Res., 92, 14 19714 203.

    • Search Google Scholar
    • Export Citation
  • Garcia-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., W. J. Randel, S. Massie, F. Wu, W. G. Read, and J. M. Russell III, 2001: El Niño as a natural experiment for studying the tropical tropopause region. J. Climate, 14, 33753392.

    • Search Google Scholar
    • Export Citation
  • Gilman, D. L., F. J. Fuglister, and J. M. Mitchell, 1963: On the power spectrum of “red noise.” J. Atmos. Sci., 20, 182184.

  • Hasebe, F., 1993: Dynamical response of the tropical total ozone to sea surface temperature changes. J. Atmos. Sci., 50, 345356.

  • Hoinka, K. P., H. Claude, and U. Kohler, 1996: On the correlation between tropopause pressure and ozone above central Europe. Geophys. Res. Lett., 23, 17531756.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., B. E. Soukharev, and J. P. McCormack, 2010: Decadal variability of the tropical stratosphere: Secondary influence of the El Niño–Southern Oscillation. J. Geophys. Res., 115, D11113, doi:10.1029/2009JD012291.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and Coauthors, 2003: Tropical cumulus convection and upward propagating waves in middle atmospheric GCMs. J. Atmos. Sci., 60, 27652782.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. B. A. Jones, R. Shia, D. E. Waliser, and Y. L. Yung, 2005: Spatial patterns and mechanisms of the quasi-biennial oscillation–annual beat of ozone. J. Geophys. Res., 110, D23308, doi:10.1029/2005JD006055.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Q. Li, M. Liang, R. L. Shia, M. T. Chahine, E. T. Olsen, L. L. Chen, and Y. L. Yung, 2008a: Simulation of upper troposphere CO2 from chemistry and transport models. Global Biogeochem. Cycles, 22, GB4025, doi:10.1029/2007GB003049.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., S. Pawson, C. D. Camp, J. E. Nielsen, R.-L. Shia, T. Liao, V. Limpasuvan, and Y. L. Yung, 2008b: Interannual variability and trends in extratropical ozone. Part I: Northern Hemisphere. J. Atmos. Sci., 65, 30133029.

    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., 1997: Principal modes of the total ozone on the Southern Oscillation timescale and related temperature variations. J. Geophys. Res., 102, 25 79725 806.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, G. C. Reid, and K. S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127, 19611983.

    • Search Google Scholar
    • Export Citation
  • Kita, K., M. Fujiwara, and S. Kawakami, 2000: Total ozone increase associated with forest fires over the Indonesian region and its relation to the El Niño–Southern oscillation. Atmos. Environ., 34, 26812690.

    • Search Google Scholar
    • Export Citation
  • Meetham, A. R., 1937: The correlation of the amount of ozone with other characteristics of the atmosphere. Quart. J. Roy. Meteor. Soc., 63, 289307.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Gupta, 2008: Goddard Earth Observing System chemistry–climate model simulations of stratospheric ozone–temperature coupling between 1950 and 2005. J. Geophys. Res., 113, D12103, doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Developments in Atmospheric Science Series, Vol. 17, Elsevier, 425 pp.

    • Search Google Scholar
    • Export Citation
  • Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, 1992: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1950: The role of vertical motions in ozone–weather relationships. J. Meteor., 7, 263267.

  • Schubert, S. D., and M. J. Munteanu, 1988: An analysis of tropopause pressure and total ozone correlations. Mon. Wea. Rev., 116, 569582.

    • Search Google Scholar
    • Export Citation
  • Shiotani, M., 1992: Annual, quasi-biennial, and El Niño-Southern Oscillation (ENSO) time-scale variations in equatorial total ozone. J. Geophys. Res., 97, 76257633.

    • Search Google Scholar
    • Export Citation
  • Soukharev, B. E., and L. L. Hood, 2006: Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparisons with models. J. Geophys. Res., 111, D20314, doi:10.1029/2006JD007107.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., H. Claude, U. Kohler, and K. P. Hoinka, 1998: Correlations between tropopause height and total ozone: Implications for long-term changes. J. Geophys. Res., 103, 19 18319 192.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., A. R. Douglass, S. E. Steenrod, and S. Pawson, 2006: Trends in stratospheric ozone: Lessons learned from a 3D chemical transport model. J. Atmos. Sci., 63, 10281041.

    • Search Google Scholar
    • Export Citation
  • Sturman, A. P., and N. Tapper, 1996: The Weather and Climate of Australia and New Zealand. Oxford University Press, 475 pp.

  • Thompson, A. M., and R. D. Hudson, 1999: Tropical tropospheric ozone (TTO) maps from Nimbus 7 and Earth Probe TOMS by the modified-residual method: Evaluation with sondes, ENSO signals, and trends from Atlantic regional time series. J. Geophys. Res., 104, 26 96126 975.

    • Search Google Scholar
    • Export Citation
  • Tian, B., Y. L. Yung, D. E. Waliser, T. Tyranowski, L. Kuai, E. J. Fetzer, and F. W. Irion, 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden–Julian oscillation. Geophys. Res. Lett., 34, L08704, doi:10.1029/2007GL029451.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Trenberth, K. E., and D. J. Shea, 1987: On the evolution of the Southern Oscillation event. Mon. Wea. Rev., 115, 30783096.

  • Trenberth, K. E., G. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and H. Yang, 1994a: Global QBO in circulation and ozone. Part I: Reexamination of observational evidence. J. Atmos. Sci., 51, 26992707.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and H. Yang, 1994b: Global QBO in circulation and ozone. Part II: A simple mechanistic model. J. Atmos. Sci., 51, 27082721.

    • Search Google Scholar
    • Export Citation
  • Zerefos, C. S., A. F. Bais, I. C. Ziomas, and R. D. Bojkov, 1992: On the relative importance of quasi-biennal oscillation and El Niño/Southern Oscillation in the revised Dobson total ozone records. J. Geophys. Res., 97, 10 13510 144.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 80 4
PDF Downloads 233 73 2