• Ansmann, A., I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, 2005: Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J. Geophys. Res., 110, D18S12, doi:10.1029/2004JD005000.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 26172634, doi:10.5194/acp-5-2617-2005.

    • Search Google Scholar
    • Export Citation
  • Bangert, M., C. Kottmeier, B. Vogel, and H. Vogel, 2011a: Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model. Atmos. Chem. Phys., 11, 44114423, doi:10.5194/acp-11-4411-2011.

    • Search Google Scholar
    • Export Citation
  • Bangert, M., and Coauthors, 2011b: Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. Discuss., 11, 31 93731 982, doi:10.5194/acpd-11-31937-2011.

    • Search Google Scholar
    • Export Citation
  • Benz, S., K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, 2005: T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber. J. Photochem. Photobiol., 176, 208217, doi:10.1016/j.jphotochem.2005.08.026.

    • Search Google Scholar
    • Export Citation
  • Bundke, U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, and H. Bingemer, 2008: The fast ice nucleus chamber FINCH. Atmos. Res., 90, 180186, doi:10.1016/j.atmosres.2008.02.008.

    • Search Google Scholar
    • Export Citation
  • Callot, Y., B. Marticorena, and G. Bergametti, 2000: Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: Application to the Sahara desert. Geodinamica Acta, 13, 245270, doi:10.1016/S0985-3111(00)01044-5.

    • Search Google Scholar
    • Export Citation
  • Conen, F., C. E. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell, 2011: Biological residues define the ice nucleation properties of soil dust. Atmos. Chem. Phys., 11, 96439648, doi:10.5194/acp-11-9643-2011.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824, doi:10.5194/acp-9-2805-2009.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, 2009: Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett., 4, 044013, doi:10.1088/1748-9326/4/4/044013.

    • Search Google Scholar
    • Export Citation
  • Davies, C. N., 1979: Particle–fluid interaction. J. Aerosol Sci., 10, 477513, doi:10.1016/0021-8502(79)90006-5.

  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide–type aerosols. Atmos. Res., 38, 6399, doi:10.1016/0169-8095(94)00088-U.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. (USA), 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2011: Resurgence in ice nuclei measurement research. Bull. Amer. Meteor. Soc., 92, 16231635.

  • Eastwood, M. L., S. Cremel, C. Gehrke, E. Girard, and A. K. Bertram, 2008: Ice nucleation on mineral dust particles: Onset conditions, nucleation rates and contact angles. J. Geophys. Res., 113, D22203, doi:10.1029/2008JD010639.

    • Search Google Scholar
    • Export Citation
  • Eastwood, M. L., S. Cremel, M. Wheeler, B. J. Murray, E. Girard, and A. K. Bertram, 2009: Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles. Geophys. Res. Lett., 36, L02811, doi:10.1029/2008GL035997.

    • Search Google Scholar
    • Export Citation
  • Ebert, V., H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, 2005: Fasergekoppeltes In-situ-Laserspektrometer für den selektiven Nachweis von Wasserdampfspuren bis in den ppb-Bereich. Tech. Mess., 72, 2330, doi: 10.1524/teme.72.1.23.56689.

    • Search Google Scholar
    • Export Citation
  • Fahey, D. W., R. S. Gao, and O. Möhler, 2009: Summary of the AquaVIT Water Vapor Intercomparison: Static experiments. AquaVIT White Paper, 102 pp. [Available online at https://aquavit.icg.kfa-juelich.de/AquaVit/AquaVitWiki.]

  • Field, P. R., O. Möhler, P. Connolly, M. Krämer, R. Cotton, A. J. Heymsfield, H. Saathoff, and M. Schnaiter, 2006: Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys., 6, 29913006, doi:10.5194/acp-6-2991-2006.

    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., K. Okada, and J. Ström, 1996: On the composition of non-volatile material in upper tropospheric aerosols and cirrus crystals. Atmos. Res., 41, 8188, doi:10.1016/0169-8095(95)00042-9.

    • Search Google Scholar
    • Export Citation
  • Hinds, W., 1999: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. Wiley, 483 pp.

  • Hoose, C., U. Lohmann, R. Erdin, and I. Tegen, 2008: The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, 025003, doi:10.1088/1748-9326/3/2/025003.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjánsson, J. Chen, and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 24832503.

    • Search Google Scholar
    • Export Citation
  • Jones, H. M., M. J. Flynn, P. J. DeMott, and O. Möhler, 2011: Manchester Ice Nucleus Counter (MINC) measurements from the 2007 International Workshop on Comparing Ice Nucleation Measuring Systems (ICIS-2007). Atmos. Chem. Phys., 11, 5365, doi:10.5194/acp-11-53-2011.

    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2007: Chemical composition and complex refractive index of Saharan mineral dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Environ., 41, 80588074, doi:10.1016/j.atmosenv.2007.06.047.

    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2009: Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, 61B, 3250, doi:10.1111/j.1600-0889.2008.00385.x.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., and J. P. D. Abbatt, 2006: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res., 111, D16204, doi:10.1029/2005JD006766.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., O. Florea, and J. P. D. Abbatt, 2008: Ice formation via deposition nucleation on mineral dust and organics: Dependence of onset relative humidity on total particulate surface area. Environ. Res. Lett., 3, 025004, doi:10.1088/1748-9326/3/2/025004.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., P. J. DeMott, O. Möhler, and J. P. D. Abbatt, 2011: Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: Instrument intercomparison and ice onsets for different aerosol types. Atmos. Chem. Phys., 11, 3141, doi:10.5194/acp-11-31-2011.

    • Search Google Scholar
    • Export Citation
  • Kelly, J. T., C. C. Chuang, and A. S. Wexler, 2007: Influence of dust composition on cloud droplet formation. Atmos. Environ., 41, 29042916, doi:10.1016/j.atmosenv.2006.12.008.

    • Search Google Scholar
    • Export Citation
  • Klein, H., and Coauthors, 2010: Saharan dust and ice nuclei over Central Europe. Atmos. Chem. Phys., 10, 10 21110 221, doi:10.5194/acp-10-10211-2010.

    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., and T. Koop, 2006: Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111, D12201, doi:10.1029/2005JD006894.

    • Search Google Scholar
    • Export Citation
  • Knote, C., and Coauthors, 2011: Towards an online coupled chemistry–climate model: Evaluation of trace gases and aerosols in COSMO-ART. Geosci. Model Dev., 4, 10771102, doi:10.5194/gmd-4-1077-2011.

    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, M. D. Petters, A. J. Prenni, and O. Möhler, 2010: Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation. Atmos. Chem. Phys., 10, 11 95511 968, doi:10.5194/acp-10-11955-2010.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, G., and S. Dobbie, 2010: Ice nucleation properties of mineral dust particles: Determination of onset RHi, IN active fraction, nucleation time-lag, and the effect of active sites on contact angles. Atmos. Chem. Phys., 10, 95105, doi:10.5194/acp-10-95-2010.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523.

    • Search Google Scholar
    • Export Citation
  • Linke, C., O. Möhler, A. Veres, A. Mohácsi, Z. Bozóki, G. Szabó, and M. Schnaiter, 2006: Optical properties and mineralogical composition of different Saharan mineral dust samples: A laboratory study. Atmos. Chem. Phys., 6, 33153323, doi:10.5194/acp-6-3315-2006.

    • Search Google Scholar
    • Export Citation
  • Lüönd, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, doi:10.1029/2009JD012959.

    • Search Google Scholar
    • Export Citation
  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091, doi:10.5194/acp-7-5081-2007.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., G. Bergametti, B. Aumont, Y. Callot, C. N’Doumé, and M. Legrand, 1997: Modeling the atmospheric dust cycle. 2. Simulation of Saharan dust sources. J. Geophys. Res., 102, 43874404.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 30073021, doi:10.5194/acp-6-3007-2006.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2008: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett., 3, 025007, doi:10.1088/1748-9326/3/2/025007.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, doi:10.1256/qj.04.94.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills, 2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 41914207, doi:10.5194/acp-11-4191-2011.

    • Search Google Scholar
    • Export Citation
  • Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou, 2001: A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res., 106 (D16), 18 11318 129.

    • Search Google Scholar
    • Export Citation
  • Nicolet, M., O. Stetzer, F. Lüönd, O. Möhler, and U. Lohmann, 2010: Single ice crystal measurements during nucleation experiments with the depolarization detector IODE. Atmos. Chem. Phys., 10, 313325, doi:10.5194/acp-10-313-2010.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2010: Heterogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys., 10, 36013614, doi:10.5194/acp-10-3601-2010.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2007: Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues. J. Geophys. Res., 112, D10221, doi:10.1029/2006JD007549.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98, 59755980, doi:10.1073/pnas.101122798.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, 1633, doi:10.1029/2003GL017371.

    • Search Google Scholar
    • Export Citation
  • Schütz, L., and M. Sebert, 1987: Mineral aerosols and source identification. J. Aerosol Sci., 18, 110, doi:10.1016/0021-8502(87)90002-4.

    • Search Google Scholar
    • Export Citation
  • Stanelle, T., B. Vogel, H. Vogel, D. Bäumer, and C. Kottmeier, 2010: Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos. Chem. Phys., 10, 10 77110 788, doi:10.5194/acp-10-10771-2010.

    • Search Google Scholar
    • Export Citation
  • Sullivan, R. C., and Coauthors, 2010: Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys., 10, 11 47111 487, doi:10.5194/acp-10-11471-2010.

    • Search Google Scholar
    • Export Citation
  • Targino, A. C., R. Krejci, K. J. Noone, and P. Glantz, 2006: Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos. Chem. Phys., 6, 19771990, doi:10.5194/acp-6-1977-2006.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., 2003: Modeling the mineral dust aerosol cycle in the climate system. Quat. Sci. Rev., 22, 18211834, doi:10.1016/S0277-3791(03)00163-X.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res., 99 (D11), 22 89722 914.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and M. R. Poellot, 2005: Chemical characteristics of ice residual nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation. Atmos. Chem. Phys., 5, 22892297, doi:10.5194/acp-5-2289-2005.

    • Search Google Scholar
    • Export Citation
  • Vogel, B., C. Hoose, H. Vogel, and C. Kottmeier, 2006: A model of dust transport applied to the Dead Sea Area. Meteor. Z., 15, 611624, doi:10.1127/0941-2948/2006/0168.

    • Search Google Scholar
    • Export Citation
  • Vogel, B., H. Vogel, D. Bäumer, M. Bangert, K. Lundgren, R. Rinke, and T. Stanelle, 2009: The comprehensive model system COSMO-ART—Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos. Chem. Phys., 9, 86618680, doi:10.5194/acp-9-8661-2009.

    • Search Google Scholar
    • Export Citation
  • Wagner, R., S. Benz, O. Möhler, H. Saathoff, and U. Schurath, 2006: Probing ice clouds by broadband mid-infrared extinction spectroscopy: Case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber. Atmos. Chem. Phys., 6, 47754800, doi:10.5194/acp-6-4775-2006.

    • Search Google Scholar
    • Export Citation
  • Welti, A., F. Lüönd, O. Stetzer, and U. Lohmann, 2009: Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys., 9, 67056715, doi:10.5194/acp-9-6705-2009.

    • Search Google Scholar
    • Export Citation
  • Wiacek, A., T. Peter, and U. Lohmann, 2010: The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds. Atmos. Chem. Phys., 10, 86498667, doi:10.5194/acp-10-8649-2010.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: A numerical simulation of wintertime, orographic precipitation: Part I. Description of model microphysics and numerical techniques. J. Atmos. Sci., 31, 17351748.

    • Search Google Scholar
    • Export Citation
  • Zuberi, B., A. K. Bertram, C. A. Cassa, L. T. Molina, and M. J. Molina, 2002: Heterogeneous nucleation of ice in (NH4)2SO4-H2O particles with mineral dust immersions. Geophys. Res. Lett., 29, 1504, doi:10.1029/2001GL014289.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1372 1036 2
PDF Downloads 683 443 1

A Particle-Surface-Area-Based Parameterization of Immersion Freezing on Desert Dust Particles

View More View Less
  • 1 Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
  • | 2 School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, United Kingdom
  • | 3 Institute for Atmospheric and Environmental Sciences, University of Frankfurt, Frankfurt am Main, Germany
  • | 4 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 5 Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany
Restricted access

Abstract

In climate and weather models, the quantitative description of aerosol and cloud processes relies on simplified assumptions. This contributes major uncertainties to the prediction of global and regional climate change. Therefore, models need good parameterizations for heterogeneous ice nucleation by atmospheric aerosols. Here the authors present a new parameterization of immersion freezing on desert dust particles derived from a large number of experiments carried out at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber facility. The parameterization is valid in the temperature range between −12° and −36°C at or above water saturation and can be used in atmospheric models that include information about the dust surface area. The new parameterization was applied to calculate distribution maps of ice nuclei during a Saharan dust event based on model results from the regional-scale model Consortium for Small-Scale Modelling–Aerosols and Reactive Trace Gases (COSMO-ART). The results were then compared to measurements at the Taunus Observatory on Mount Kleiner Feldberg, Germany, and to three other parameterizations applied to the dust outbreak. The aerosol number concentration and surface area from the COSMO-ART model simulation were taken as input to different parameterizations. Although the surface area from the model agreed well with aerosol measurements during the dust event at Kleiner Feldberg, the ice nuclei (IN) number concentration calculated from the new surface-area-based parameterization was about a factor of 13 less than IN measurements during the same event. Systematic differences of more than a factor of 10 in the IN number concentration were also found among the different parameterizations. Uncertainties in the modeled and measured parameters probably both contribute to this discrepancy and should be addressed in future studies.

Corresponding author address: Monika Niemand, Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Aerosol Research Division, P.O. Box 3640, 76021 Karlsruhe, Germany. E-mail: monika.niemand@kit.edu

Abstract

In climate and weather models, the quantitative description of aerosol and cloud processes relies on simplified assumptions. This contributes major uncertainties to the prediction of global and regional climate change. Therefore, models need good parameterizations for heterogeneous ice nucleation by atmospheric aerosols. Here the authors present a new parameterization of immersion freezing on desert dust particles derived from a large number of experiments carried out at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber facility. The parameterization is valid in the temperature range between −12° and −36°C at or above water saturation and can be used in atmospheric models that include information about the dust surface area. The new parameterization was applied to calculate distribution maps of ice nuclei during a Saharan dust event based on model results from the regional-scale model Consortium for Small-Scale Modelling–Aerosols and Reactive Trace Gases (COSMO-ART). The results were then compared to measurements at the Taunus Observatory on Mount Kleiner Feldberg, Germany, and to three other parameterizations applied to the dust outbreak. The aerosol number concentration and surface area from the COSMO-ART model simulation were taken as input to different parameterizations. Although the surface area from the model agreed well with aerosol measurements during the dust event at Kleiner Feldberg, the ice nuclei (IN) number concentration calculated from the new surface-area-based parameterization was about a factor of 13 less than IN measurements during the same event. Systematic differences of more than a factor of 10 in the IN number concentration were also found among the different parameterizations. Uncertainties in the modeled and measured parameters probably both contribute to this discrepancy and should be addressed in future studies.

Corresponding author address: Monika Niemand, Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Aerosol Research Division, P.O. Box 3640, 76021 Karlsruhe, Germany. E-mail: monika.niemand@kit.edu
Save