• Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, doi:10.1029/2010JD014782.

    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., T. Tsuda, Y. Kawatani, and M. Takahashi, 2008: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115, doi:10.1029/2008JD010039.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229.

  • Barriopedro, D., R. Garcia-Herrera, and R. Huth, 2008: Solar modulation of Northern Hemisphere winter blocking. J. Geophys. Res., 113, D14118, doi:10.1029/2008JD009789.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2010: Revisiting the influence of the quasi-biennial oscillation on tropical cyclone activity. J. Climate, 23, 58105825.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1990: Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 68, 499508.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1993: Observation of 3-6 day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 32923307.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 (D22), 26 05326 076.

  • Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 15851601.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space–time spectra. Atmos. Chem. Phys., 9, 39573986.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845869.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and M. Takahashi, 2001: Role of the equatorial Kelvin wave in stratosphere-troposphere exchange in a general circulation model. J. Geophys. Res., 106, 22 76322 780.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in wintertime in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 20262041.

    • Search Google Scholar
    • Export Citation
  • Gehne, M., and R. Kleeman, 2012: Spectral analysis of tropical atmospheric dynamical variables using a linear shallow-water modal decomposition. J. Atmos. Sci., 69, 23002316.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., 2010: Stratospheric equatorial dynamics. The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 93–107.

  • Gray, W. M., C. W. Landsea, P. W. Mielke, and K. J. Berry, 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8, 7386.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and C. B. Leovy, 1988: Estimation of the Kelvin wave contribution to the semiannual oscillation. J. Atmos. Sci., 45, 14621475.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G.-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57, 11971213.

  • Kawatani, Y., M. Takahashi, K. Sato, S. P. Alexander, and T. Tsuda, 2009: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res., 114, D01102, doi:10.1029/2008JD010374.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010a: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010b: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci., 67, 981997.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, D03108, doi:10.1029/2011JD016317.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasibiennial oscillation. J. Atmos. Sci., 25, 10951107.

  • Lott, F., J. Kuttippurath, and F. Vial, 2009: A climatology of the gravest waves in the equatorial lower and middle stratosphere: Method and results for the ERA-40 Re-Analysis and the LMDz GCM. J. Atmos. Sci., 66, 13271346.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2009: The impact of the QBO on surface winter climate. J. Geophys. Res., 114, D18110, doi:10.1029/2009JD011737.

    • Search Google Scholar
    • Export Citation
  • Radon, J., 1917: Uber die Bestimmung von Funktionen durch ihre Integralwerte längs Gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig, 69, 262267.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1992: Upper tropospheric equatorial waves in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 118, 365394.

  • Randel, W. J., and F. Wu, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, D03102, doi:10.1029/2004JD005006.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., and Coauthors, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19, 13021326.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668.

    • Search Google Scholar
    • Export Citation
  • Suzuki, J., and M. Shiotani, 2008: Space-time variability of equatorial Kelvin waves and intraseasonal oscillation around the tropical tropopause. J. Geophys. Res., 113, D16110, doi:10.1029/2007JD009456.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 443448.

    • Search Google Scholar
    • Export Citation
  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006: Equatorial waves in the lower stratosphere. II: Annual and inter-annual variability. Quart. J. Roy. Meteor. Soc., 132, 195212.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900907.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan, 44, 291294.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007a: Convectively coupled equatorial waves. Part I: Horizontal structure. J. Atmos. Sci., 64, 34063423.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007b: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64, 34243437.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007c: Convectively coupled equatorial waves. Part III: Synthesis structures and their forcing and evolution. J. Atmos. Sci., 64, 34383451.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. Slingo, and B. Hoskins, 2009: Convectively coupled equatorial waves in high-resolution Hadley Centre climate models. J. Climate, 22, 18971919.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2011: Equatorial waves in opposite QBO phases. J. Atmos. Sci., 68, 839862.

  • Zangvil, A., and M. Yanai, 1980: Upper tropospheric waves in the tropics. Part I: Dynamical analysis in the wavenumber–frequency domain. J. Atmos. Sci., 37, 283298.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., and M. Yanai, 1981: Upper tropospheric waves in the tropics. Part II: Association with clouds in the wavenumber–frequency domain. J. Atmos. Sci., 38, 939953.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 187 1
PDF Downloads 247 187 0

The Influence of the QBO on the Propagation of Equatorial Waves into the Stratosphere

View More View Less
  • 1 National Centre for Atmospheric Science, and University of Reading, Reading, United Kingdom
  • | 2 University of Reading, Reading, and Grantham Institute for Climate Change, Imperial College, London, United Kingdom
  • | 3 National Centre for Atmospheric Science, Reading, and University of Oxford, Oxford, United Kingdom
Restricted access

Abstract

The variation of stratospheric equatorial wave characteristics with the phase of the quasi-biennial oscillation (QBO) is investigated using ECMWF Re-Analysis and NOAA outgoing longwave radiation (OLR) data. The impact of the QBO phases on the upward propagation of equatorial waves is found to be consistent and significant. In the easterly phase, there is larger Kelvin wave amplitude but smaller westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave amplitude due to reduced propagation from the upper troposphere into the lower stratosphere, compared with the westerly phase. Differences in the wave amplitude exist in a deeper layer in summer than in winter, consistent with the seasonality of ambient zonal winds. There is a strong evidence of Kelvin wave amplitude peaking just below the descending westerly phase, suggesting that Kelvin waves act to bring the westerly phase downward. However, the corresponding evidence for WMRG and R1 waves is less clear.

In the lower stratosphere there is zonal variation in equatorial waves. This reflects the zonal asymmetry of wave amplitudes in the upper troposphere, the source for the lower-stratospheric waves. In easterly winters the upper-tropospheric WMRG and R1 waves over the eastern Pacific region appear to be somewhat stronger compared to climatology, perhaps because of the accumulation of waves that are unable to propagate upward into the lower stratosphere. Vertical propagation features of these waves are generally consistent with theory and suggest a mixture of Doppler shifting by ambient flows and filtering. Some lower-stratosphere equatorial waves have a connection with preceding tropical convection, especially for Kelvin and R1 waves in winter.

Corresponding author address: Gui-Ying Yang, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. E-mail: g.y.yang@reading.ac.uk

Abstract

The variation of stratospheric equatorial wave characteristics with the phase of the quasi-biennial oscillation (QBO) is investigated using ECMWF Re-Analysis and NOAA outgoing longwave radiation (OLR) data. The impact of the QBO phases on the upward propagation of equatorial waves is found to be consistent and significant. In the easterly phase, there is larger Kelvin wave amplitude but smaller westward-moving mixed Rossby–gravity (WMRG) and n = 1 Rossby (R1) wave amplitude due to reduced propagation from the upper troposphere into the lower stratosphere, compared with the westerly phase. Differences in the wave amplitude exist in a deeper layer in summer than in winter, consistent with the seasonality of ambient zonal winds. There is a strong evidence of Kelvin wave amplitude peaking just below the descending westerly phase, suggesting that Kelvin waves act to bring the westerly phase downward. However, the corresponding evidence for WMRG and R1 waves is less clear.

In the lower stratosphere there is zonal variation in equatorial waves. This reflects the zonal asymmetry of wave amplitudes in the upper troposphere, the source for the lower-stratospheric waves. In easterly winters the upper-tropospheric WMRG and R1 waves over the eastern Pacific region appear to be somewhat stronger compared to climatology, perhaps because of the accumulation of waves that are unable to propagate upward into the lower stratosphere. Vertical propagation features of these waves are generally consistent with theory and suggest a mixture of Doppler shifting by ambient flows and filtering. Some lower-stratosphere equatorial waves have a connection with preceding tropical convection, especially for Kelvin and R1 waves in winter.

Corresponding author address: Gui-Ying Yang, Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom. E-mail: g.y.yang@reading.ac.uk
Save