• Ackerman, A. S., P. V. Hobbs, and O. B. Toon, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 12041236.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2009: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J. Geophys. Res., 114, D17208, doi:10.1029/2008JD011659.

    • Search Google Scholar
    • Export Citation
  • Auer, A., and D. Veal, 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27, 919926.

  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, doi:10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Baker, M., 1997: Cloud microphysics and climate: Tropospheric processes. Science, 276, 10721078.

  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 12391260.

  • Baran, A. J., and L. C.-Labonnote, 2006: On the reflection and polarisation properties of ice cloud. J. Quant. Spectrosc. Radiat. Transfer, 100, 4154.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. J. Connolly, A. J. Heymsfield, and A. Bansemer, 2011: Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals. Quart. J. Roy. Meteor. Soc., 137, 199218.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y.-X. Hu, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, Y.-X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transfer, 111, 25342549.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y.-X. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., and Coauthors, 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 126, 865888.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and P. Minnis, 2010: GOES 12 observations of convective storm variability and evolution during the Tropical Composition, Clouds and Climate Coupling Experiment field program. J. Geophys. Res., 115, D00J13, doi:10.1029/2009JD013227.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043.

    • Search Google Scholar
    • Export Citation
  • Böhm, J., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427.

  • Böhm, J., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors. Atmos. Res., 27, 253274.

    • Search Google Scholar
    • Export Citation
  • Bréon, F. M., 2006: PARASOL level-1 product: Data format and user manual. CNES, 33 pp. [Available online at http://www.icare.univ-lille1.fr/products/download/Parasol_Level-1_format.pdf.]

  • Bréon, F. M., and P. Goloub, 1998: Cloud droplet effective radius from spaceborne polarization measurements. Geophys. Res. Lett., 25, 18791882.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and A. J. Heymsfield, 2001: The microphysical properties of tropical convective anvil cirrus: A comparison of models and observations. Quart. J. Roy. Meteor. Soc., 127, 15351550.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., P. Goloub, J. Riedi, J. F. De Haan, J. W. Hovenier, and P. H. Flamant, 2001: Ice crystal shapes in cirrus clouds derived from POLDER/ADEOS-1. J. Geophys. Res., 106 (D8), 79557966.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., S. L. Nasiri, and P. Yang, 2009: Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. J. Appl. Meteor. Climatol., 48, 21692180.

    • Search Google Scholar
    • Export Citation
  • C.-Labonnote, L., G. Brogniez, M. Doutriaux-Boucher, J.-C. Buriez, J.-F. Gayet, and H. Chepfer, 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett., 27, 113116.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, A. V. Korolev, and J. W. Strapp, 2001: Assessing cloud-phase conditions. J. Appl. Meteor., 40, 19671983.

  • Cooper, S. J., and T. J. Garrett, 2010: Identification of small ice cloud particles using passive radiometric observations. J. Appl. Meteor. Climatol., 49, 23342347.

    • Search Google Scholar
    • Export Citation
  • De Haan, J., P. Bosma, and J. Hovenier, 1987: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183, 371391.

    • Search Google Scholar
    • Export Citation
  • Fan, J., J. M. Comstock, M. Ovchinnikov, S. A. McFarlane, G. McFarquhar, and G. Allen, 2010: Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations. J. Geophys. Res., 115, D12201, doi:10.1029/2009JD012696.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. Wood, P. R. A. Brown, P. H. Kaye, E. Hirst, R. Greenaway, and J. A. Smith, 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261.

    • Search Google Scholar
    • Export Citation
  • Fougnie, B., G. Bracco, B. Lafrance, C. Ruffel, O. Hagolle, and C. Tinel, 2007: PARASOL in-flight calibration and performance. Appl. Opt., 46, 54355451.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489529.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., A. Jones, R. W. Saunders, K. P. Shine, A. Slingo, and Z. Sun, 1994: An observational and theoretical study of the radiative properties of cirrus: Some results from ICE’89. Quart. J. Roy. Meteor. Soc., 120, 809848.

    • Search Google Scholar
    • Export Citation
  • Frederick, K., and C. Schumacher, 2008: Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Mon. Wea. Rev., 136, 206222.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2004: Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718722.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. M. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, J. Petch, P. Field, A. Hill, G. McFarquhar, S. Xie, and M. Zhang, 2010: ARM/GCSS/SPARC TWP-ICE CRM intercomparison study. NASA Tech. Memo. NASA-TM-2010-215858, 24 pp.

  • Fridlind, A. M., and Coauthors, 2012a: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., B. Van Diedenhoven, A. Ackerman, A. Avramov, A. Mrowiec, H. Morrison, P. Zuidema, and M. Shupe, 2012b: A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes. J. Atmos. Sci., 69, 365389.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 41404150.

  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths. J. Atmos. Sci., 56, 29372947.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., H. Gerber, D. G. Baumgardner, C. H. Thohy, and E. M. Weinstock, 2003: Small, highly reflective ice crystals in low-latitude cirrus. Geophys. Res. Lett., 30, 2132, doi:10.1029/2003GL018153.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and Coauthors, 2005: Evolution of a Florida cirrus anvil. J. Atmos. Sci., 62, 23522372.

  • Gayet, J.-F., and Coauthors, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the Southern Hemisphere during INCA. Quart. J. Roy. Meteor. Soc., 132, 27192748.

    • Search Google Scholar
    • Export Citation
  • Giraud, V., O. Thouron, J. Riedi, and P. Goloub, 2001: Analysis of direct comparison of cloud top temperature and infrared split window signature against independent retrievals of cloud thermodynamic phase. Geophys. Res. Lett., 28, 983986.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., M. Herman, H. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Séze, 2000: Cloud thermodynamical phase classification from the POLDER spaceborne instrument. J. Geophys. Res., 105 (D11), 14 74714 759.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 1999: A parameterization of cloud microphysics for long-term cloud-resolving modeling of tropical convection. Atmos. Res., 52, 1741.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., and D. T. Lindsey, 2011: An example of the use of synthetic 3.9 μm GOES-12 imagery for two-moment microphysical evaluation. Int. J. Remote Sens., 32, 23372350.

    • Search Google Scholar
    • Export Citation
  • Grasso, L. D., M. Sengupta, and M. Demaria, 2010: Comparison between observed and synthetic 6.5 and 10.7 μm GOES-12 imagery of thunderstorms that occurred on 8 May 2003. Int. J. Remote Sens., 31, 647663.

    • Search Google Scholar
    • Export Citation
  • Grenfell, T. C., and S. G. Warren, 1999: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104 (D24), 31 69731 709.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610.

  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 44954511.

    • Search Google Scholar
    • Export Citation
  • Hendricks, J., B. Kärcher, and U. Lohmann, 2011: Effects of ice nuclei on cirrus clouds in a global climate model. J. Geophys. Res., 116, D18206, doi:10.1029/2010JD015302.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I: Aircraft observations of the growth of the ice phase. J. Atmos. Sci., 32, 799808.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47, 18651877.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916938.

  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°. J. Atmos. Sci., 66, 35303562.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Inoue, T., M. Satoh, Y. Hagihara, H. Miura, and J. Schmetz, 2010: Comparison of high-level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and O. B. Toon, 1994: Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate. Geophys. Res. Lett., 21, 2019, doi:10.1029/94GL01287.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2011: Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457463.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2001: Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model. Geophys. Res. Lett., 28, 38873890.

    • Search Google Scholar
    • Export Citation
  • Kindel, B. C., K. S. Schmidt, P. Pilewskie, B. A. Baum, P. Yang, and S. Platnick, 2010: Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K.-N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the Arctic: Application of airborne multispectral MAS data. J. Atmos. Oceanic Technol., 21, 857875.

    • Search Google Scholar
    • Export Citation
  • Knap, W. H., L. C. Labonnote, G. Brogniez, and P. Stammes, 2005: Modeling total and polarized reflectances of ice clouds: Evaluation by means of POLDER and ATSR-2 measurements. Appl. Opt., 44, 40604073.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808.

  • Korolev, A., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. L. Hartmann, and R. Wood, 2007: Radiative and convective driving of tropical high clouds. J. Climate, 20, 55105526.

  • Lacis, A. A., and V. Oinas, 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96 (D5), 90279063.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., E. Jensen, D. L. Mitchell, B. Baker, Q. Mo, and B. Pilson, 2010: Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J. Geophys. Res., 115, D00J08, doi:10.1029/2009JD013017.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2006: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos. Chem. Phys., 6, 28872894.

    • Search Google Scholar
    • Export Citation
  • Liu, X., S. Ding, L. Bi, and P. Yang, 2012: On the use of scattering kernels to calculate ice cloud bulk optical properties. J. Atmos. Oceanic Technol., 29, 5063.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manalo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., G. Y. Liu, G. L. Stephens, and R. H. Johnson, 2009: Terminal versus transient cumulus congestus: A CloudSat perspective. Geophys. Res. Lett., 36, L05808, doi:10.1029/2008GL036927.

    • Search Google Scholar
    • Export Citation
  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 28132825.

  • Marshak, A., L. Oreopoulos, A. B. Davis, W. J. Wiscombe, and R. F. Cahalan, 1999: Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths. Geophys. Res. Lett., 26, 1585, doi:10.1029/1999GL900306.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Coauthors, 2010: Satellite data simulator unit: A multisensor, multispectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 16251632.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1997: Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX. J. Atmos. Sci., 54, 21872200.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55, 20392052.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Meyers, M., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377445.

  • Minnis, P., C. R. Yost, S. Sun-Mack, and Y. Chen, 2008: Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data. Geophys. Res. Lett., 35, L12801, doi:10.1029/2008GL033947.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci., 59, 23302346.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and R. P. d’Entremont, 2011: Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C. Atmos. Meas. Tech. Discuss., 4, 76577698.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Y. Liu, and A. Macke, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 29672988.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. Mishra, and R. P. Lawson, 2011a: Cirrus clouds and climate engineering: New findings on ice nucleation and theoretical basis. Planet Earth 2011 – Global Warming Challenges and Opportunities for Policy and Practice, E. G. Carayannis, Ed., InTech, 257–288.

  • Mitchell, D. L., S. Mishra, and R. P. Lawson, 2011b: Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC). J. Geophys. Res., 116, D00T03, doi:10.1029/2010JD015433.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., S. K. Krueger, D. Gregory, J.-L. Redelsperger, and W.-K. Tao, 1997: GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems. Bull. Amer. Meteor. Soc., 78, 831845.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2011: Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE. J. Adv. Model. Earth Syst., 3, M06003, doi:10.1029/2011MS000066.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 5169.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47, 28952910.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., and Coauthors, 2010: Thermodynamic phase profiles of optically thin midlatitude clouds and their relation to temperature. J. Geophys. Res., 115, D11202, doi:10.1029/2009JD012889.

    • Search Google Scholar
    • Export Citation
  • Neshyba, S. P., T. C. Grenfell, and S. G. Warren, 2003: Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates. J. Geophys. Res., 108, 4448, doi:10.1029/2002JD003302.

    • Search Google Scholar
    • Export Citation
  • Noel, V., D. M. Winker, M. McGill, and P. Lawson, 2004: Classification of particle shapes from lidar depolarization ratios in convective ice clouds compared to in situ observations during CRYSTAL-FACE. J. Geophys. Res., 109, D24213, doi:10.1029/2004JD004883.

    • Search Google Scholar
    • Export Citation
  • Nousiainen, T., H. Lindqvist, G. M. McFarquhar, and J. Um, 2011: Small irregular ice crystals in tropical cirrus. J. Atmos. Sci., 68, 26142627.

    • Search Google Scholar
    • Export Citation
  • Ottaviani, M., and Coauthors, 2012: Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill. Remote Sens. Environ., 121, 389403.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., L. J. Donner, and S. T. Garner, 2007: Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics. J. Atmos. Sci., 64, 738761.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105 (D18), 22 91922 935.

  • Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Protat, A., G. M. McFarquhar, J. Um, and J. Delanoë, 2011: Obtaining best estimates for the microphysical and radiative properties of tropical ice clouds from TWP-ICE in situ microphysical observations. J. Appl. Meteor. Climatol., 50, 895915.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Riedi, J., P. Goloub, and R. T. Marchand, 2001: Comparison of POLDER cloud phase retrievals to active remote sensors measurements at the ARM SGP site. Geophys. Res. Lett., 28, 21852188.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., and Coauthors, 2010: Cloud thermodynamic phase inferred from merged POLDER and MODIS data. Atmos. Chem. Phys., 10, 11 85111 865.

    • Search Google Scholar
    • Export Citation
  • Ringer, M. A., J. M. Edwards, and A. Slingo, 2003: Simulation of satellite channel radiances in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 11691190.

    • Search Google Scholar
    • Export Citation
  • Rolland, P., K. N. Liou, M. D. King, S. C. Tsay, and G. M. McFarquhar, 2000: Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: Methodology and sensitivity to physical assumptions. J. Geophys. Res., 105 (D9), 11 72111 738.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5 °C. Nature, 405, 440442.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287

  • Sherwood, S. C., and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127, 17771795.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., V. T. J. Phillips, and J. S. Wettlaufer, 2006: Small ice crystals and the climatology of lightning. Geophys. Res. Lett., 33, L05804, doi:10.1029/2005GL025242.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W. Jr., and G. L. Stephens, 1991: A theoretical and observational study of the radiative properties of cirrus: Results from FIRE 1986. J. Atmos. Sci., 48, 20442059.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94 (D13), 16 28716 301.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304.

  • Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley, 470 pp.

  • van Diedenhoven, B., A. M. Fridlind, A. S. Ackerman, E. W. Eloranta, and G. M. McFarquhar, 2009: An evaluation of ice formation in large-eddy simulations of supercooled Arctic stratocumulus using ground-based lidar and cloud radar. J. Geophys. Res., 114, D10203, doi:10.1029/2008JD011198.

    • Search Google Scholar
    • Export Citation
  • Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.

    • Search Google Scholar
    • Export Citation
  • Wang, X., K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, 2009a: Remote sensing of cirrus cloud vertical size profile using MODIS data. J. Geophys. Res., 114, D09205, doi:10.1029/2008JD011327.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. N. Long, L. R. Leung, J. Dudhia, S. A. McFarlane, J. H. Mather, S. J. Ghan, and X. Liu, 2009b: Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006. J. Geophys. Res., 114, D21203, doi:10.1029/2009JD012729.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., 2008: The fall speeds of sub-100 micron ice crystals. Quart. J. Roy. Meteor. Soc., 134, 12431251.

  • Westbrook, C. D., and A. J. Illingworth, 2011: Evidence that ice forms primarily in supercooled liquid clouds at temperatures >−27°C. Geophys. Res. Lett., 38, L14808, doi:10.1029/2011GL048021.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev., E70, 021403, doi:10.1103/PhysRevE.70.021403.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206219.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1977: The Delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 14081422.

    • Search Google Scholar
    • Export Citation
  • Wu, J., A. D. Del Genio, M.-S. Yao, and A. B. Wolf, 2009: WRF and GISS SCM simulations of convective updraft properties during TWP-ICE. J. Geophys. Res., 114, D04206, doi:10.1029/2008JD010851.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yang, P., and Q. Fu, 2009: Dependence of ice crystal optical properties on particle aspect ratio. J. Quant. Spectrosc. Radiat. Transfer, 110, 16041614.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2001: Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands. J. Geophys. Res., 106 (D15), 17 26717 291.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Kattawar, G. Hong, P. Minnis, and Y. Hu, 2008a: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds–Part I: Single-scattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 19401947.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Hong, G. Kattawar, and P. Minnis, 2008b: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II–Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size. IEEE Trans. Geosci. Remote Sens., 46, 19481957.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115, D00H32, doi:10.1029/2009JD012334.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., and Z. Li, 2010: General macro- and microphysical properties of deep convective clouds as observed by MODIS. J. Climate, 23, 34573473.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., J. V. Martins, Z. Li, and L. A. Remer, 2010: Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophys. Res. Lett., 37, L08808, doi:10.1029/2010GL042753.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., P. Yang, G. Kattawar, J. Riedi, B. A. Baum, S. Platnick, and H. Huang, 2009: Influence of ice particle model on satellite ice cloud retrieval: Lessons learned from MODIS and POLDER cloud product comparison. Atmos. Chem. Phys., 9, 71157129.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock, 2010: Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds. J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., G. Wind, S. Platnick, and A. S. Ackerman, 2010: Testing remote sensing on artificial observations: Impact of drizzle and 3-D cloud structure on effective radius retrievals. Atmos. Chem. Phys., 10, 95359549.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 79 1
PDF Downloads 125 61 2

Evaluation of Hydrometeor Phase and Ice Properties in Cloud-Resolving Model Simulations of Tropical Deep Convection Using Radiance and Polarization Measurements

View More View Less
  • 1 Center for Climate System Research, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, New York, New York
Restricted access

Abstract

Satellite measurements are used to evaluate the glaciation, particle shape, and effective radius in cloud-resolving model simulations of tropical deep convection. Multidirectional polarized reflectances constrain the ice crystal geometry and the thermodynamic phase of the cloud tops, which in turn are used to calculate near-infrared reflectances so as to constrain the simulated ice effective radius, thereby avoiding inconsistencies between retrieval algorithms and model simulations. Liquid index values derived from Polarization and Directionality of the Earth’s Reflectances (POLDER) measurements indicate only ice-topped clouds at brightness temperatures (BTs) lower than −40°C, only liquid clouds at BT > −20°C, and both phases occurring at temperatures in between. Liquid index values calculated from model simulations generally reveal too many ice-topped clouds at BT > −20°C. The model assumption of platelike ice crystals with an aspect ratio of 0.7 is found consistent with POLDER measurements for BT < −40°C when very rough ice crystals are assumed, leading to an asymmetry parameter of 0.74, whereas measurements indicate more extreme aspect ratios of ~0.15 at higher temperatures, yielding an asymmetry parameter of 0.84. MODIS-retrieved ice effective radii are found to be 18–28 μm at BT < −40°C, but biased low by about 5 μm owing primarily to the assumption of pristine crystals in the retrieval. Simulated 2.13-μm reflectances at BT < −40°C are found to be about 0.05–0.1 too large compared to measurements, suggesting that model-simulated effective radii are 7–15 μm too small. Two simulations with contrasting ice nucleation schemes showed little difference in simulated effective radii at BT < −40°C, indicating that homogeneous nucleation is dominating in the simulations. Changes around −40°C in satellite observations suggest a change in cloud-top ice shape and/or size in natural deep convection possibly related to a change in the freezing mechanism.

Corresponding author address: Bastiaan van Diedenhoven, Center for Climate System Research, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: bastiaan.vandiedenhoven@nasa.gov

Abstract

Satellite measurements are used to evaluate the glaciation, particle shape, and effective radius in cloud-resolving model simulations of tropical deep convection. Multidirectional polarized reflectances constrain the ice crystal geometry and the thermodynamic phase of the cloud tops, which in turn are used to calculate near-infrared reflectances so as to constrain the simulated ice effective radius, thereby avoiding inconsistencies between retrieval algorithms and model simulations. Liquid index values derived from Polarization and Directionality of the Earth’s Reflectances (POLDER) measurements indicate only ice-topped clouds at brightness temperatures (BTs) lower than −40°C, only liquid clouds at BT > −20°C, and both phases occurring at temperatures in between. Liquid index values calculated from model simulations generally reveal too many ice-topped clouds at BT > −20°C. The model assumption of platelike ice crystals with an aspect ratio of 0.7 is found consistent with POLDER measurements for BT < −40°C when very rough ice crystals are assumed, leading to an asymmetry parameter of 0.74, whereas measurements indicate more extreme aspect ratios of ~0.15 at higher temperatures, yielding an asymmetry parameter of 0.84. MODIS-retrieved ice effective radii are found to be 18–28 μm at BT < −40°C, but biased low by about 5 μm owing primarily to the assumption of pristine crystals in the retrieval. Simulated 2.13-μm reflectances at BT < −40°C are found to be about 0.05–0.1 too large compared to measurements, suggesting that model-simulated effective radii are 7–15 μm too small. Two simulations with contrasting ice nucleation schemes showed little difference in simulated effective radii at BT < −40°C, indicating that homogeneous nucleation is dominating in the simulations. Changes around −40°C in satellite observations suggest a change in cloud-top ice shape and/or size in natural deep convection possibly related to a change in the freezing mechanism.

Corresponding author address: Bastiaan van Diedenhoven, Center for Climate System Research, Columbia University, 2880 Broadway, New York, NY 10025. E-mail: bastiaan.vandiedenhoven@nasa.gov
Save