• Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Ariya, P. A., J. Sun, N. A. Eltouny, E. D. Hudson, C. T. Hayes, and G. Kos, 2009: Physical and chemical characterization of bioaerosols - Implications for nucleation processes. Int. Rev. Phys. Chem., 28, 132.

    • Search Google Scholar
    • Export Citation
  • Asai, T., and A. Kasahara, 1967: A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci., 24, 487496.

    • Search Google Scholar
    • Export Citation
  • Baker, M., 2001: Cloud physics: Inside history on droplets. Nature, 413, 586587.

  • Berezinski, N. A., G. V. Stepanov, and V. G. Khorguani, 1988: Ice-forming activity of atmospheric aerosol particles of different sizes. Atmospheric Aerosols and Nucleation, P. E. Wagner and G. Vali, Eds., Springer, 709–712.

  • Blyth, A. M., and J. Latham, 1993: Development of ice and precipitation in New Mexican summertime cumulus clouds. Quart. J. Roy. Meteor. Soc., 119, 91120.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284294.

    • Search Google Scholar
    • Export Citation
  • Bowers, R. M., C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallerar, R. Fall, R. Knight, and N. Fierer, 2009: Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol., 75, 51215130.

    • Search Google Scholar
    • Export Citation
  • Bowers, R. M., S. McLetchie, R. Knight, and N. Fierer, 2010: Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J., 5, 601612.

    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., W. Elbert, M. G. Lawrence, and U. Pöschl, 2009: Bacteria in the global atmosphere - Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys., 9, 92639280.

    • Search Google Scholar
    • Export Citation
  • Cardwell, J., P. R. Field, and T. W. Choularton, 2003: A modelling study of ice-spectrum modes in deep frontal clouds. Quart. J. Roy. Meteor. Soc., 129, 18731890.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particle analyses of ice nucleating particles in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25, 13911394.

    • Search Google Scholar
    • Export Citation
  • Chou, C., O. Stetzer, E. Weingartner, Z. Jurányi, Z. A. Kanji, and U. Lohmann, 2011: Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps. Atmos. Chem. Phys., 11, 47254738.

    • Search Google Scholar
    • Export Citation
  • Choularton, T. W., J. Latham, and B. J. Mason, 1978: A possible mechanism of ice splinter production during riming. Nature, 274, 791792.

    • Search Google Scholar
    • Export Citation
  • Christner, B. C., C. E. Morris, C. M. Foreman, R. Cai, and D. C. Sands, 2008: Ubiquity of biological ice nucleators in snowfall. Science, 319, 1214, doi:10.1126/science.1149757.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and Coauthors, 2004: Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res., 109, D15S09, doi:10.1029/2003JD004378.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Mohler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824.

    • Search Google Scholar
    • Export Citation
  • Cui, Z., K. S. Carslaw, Y. Yin, and S. Davies, 2006: A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment. J. Geophys. Res., 111, D05201, doi:10.1029/2005JD005981.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and A. J. Prenni, 2010: New directions: Need for defining the numbers and sources of biological aerosols acting as ice nuclei. Atmos. Environ., 44, 19441945.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • Després, V. R., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15598, doi:10.3402/tellusb.v64i0.15598.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion model: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61, 20632072.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2010: Air parcel model simulations of a convective cloud: Bacteria acting as immersion ice nuclei. Atmos. Environ., 44, 46224628.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., and Coauthors, 1986: Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res., 91, 12311247.

    • Search Google Scholar
    • Export Citation
  • Dymarska, M., B. J. Murray, L. Sun, M. L. Eastwood, D. A. Knopf, and A. K. Bertram, 2006: Deposition ice nucleation on soot at temperatures relevant for the lower troposphere. J. Geophys. Res., 111, D04204, doi:10.1029/2005JD006627.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., H. Jiang, and J. Y. Harrington, 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32, L02804, doi:10.1029/2004GL021369.

    • Search Google Scholar
    • Export Citation
  • Franc, G. D., and P. J. DeMott, 1998: Cloud activation characteristics of airborne Erwinia carotovora cells. J. Appl. Meteor., 37, 12931300.

    • Search Google Scholar
    • Export Citation
  • Gross, D. C., Y. S. Cody, E. L. Proebsting, G. K. Radamaker, and R. A. Spotts, 1983: Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl. Environ. Microbiol., 46, 13701379.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., R. I. Sax, D. Lamb, and A. S. R. Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631651.

    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663745.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and S. C. Mossop, 1984: Temperature dependence of secondary ice crystal production during soft hail growth by riming. Quart. J. Roy. Meteor. Soc., 110, 765770.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50, 23352353.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 25232449.

  • Hobbs, P. V., and A. L. Rangno, 1990: Rapid development of ice particle concentrations in small, polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Reply to “Comments by Alan M. Blyth and John Latham on ‘Cumulus glaciation papers by P. V. Hobbs and A. L. Rangno.’” Quart. J. Roy. Meteor. Soc., 124, 10091011.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1973: A one-dimensional cumulus model including pressure perturbations. Mon. Wea. Rev., 101, 201205.

  • Hoose, C., J. E. Kristjansson, and S. M. Burrows, 2010a: How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett., 5, 024009, doi:10.1088/1748-9326/5/2/024009.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., J. E. Kristjansson, J.-P. Chen, and A. Hazra, 2010b: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 24832503.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R., and T. S. Verma, 2001: The impact of biomass burning on the environmental aerosol concentration in Gaborone, Botswana. Atmos. Environ., 35, 18211828.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 29833001.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. T. J. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663.

    • Search Google Scholar
    • Export Citation
  • Khain, A., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17111748.

    • Search Google Scholar
    • Export Citation
  • Klein, H., and Coauthors, 2010: Saharan dust and ice nuclei over central Europe. Atmos. Chem. Phys., 10, 10 21110 221.

  • Knopf, D. A., P. A. Alpert, B. Wang, and J. Y. Aller, 2011: Stimulation of ice nucleation by marine diatoms. Nat. Geosci., 4, 8890.

  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2747.

  • Latham, J., and W. P. R. Saunders, 1970: Experimental measurements of the collection efficiencies of ice crystals in electric fields. Quart. J. Roy. Meteor. Soc., 96, 255265.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, and V. T. J. Phillips, 2009: Impacts of aerosol chemical composition on microphysics and precipitation in deep convection. Atmos. Res., 94, 220237.

    • Search Google Scholar
    • Export Citation
  • Leroy, D., M. Monier, W. Wobrock, and A. I. Flossmann, 2006: A numerical study of the effects of the aerosol particle spectrum on the development of the ice phase and precipitation formation. Atmos. Res., 80, 1545.

    • Search Google Scholar
    • Export Citation
  • Lindemann, J., H. A. Constantinidou, W. R. Barchet, and C. D. Upper, 1982: Plants as sources of airborne bacteria including, ice nucleation-active bacteria. Appl. Environ. Microbiol., 44, 10591063.

    • Search Google Scholar
    • Export Citation
  • List, R., and E. P. Lozowski, 1970: Pressure perturbation and buoyancy in convective clouds. J. Atmos. Sci., 27, 168170.

  • Masunaga, H., and C. D. Kummerow, 2006: Observations of tropical precipitating clouds ranging from shallow to deep convective systems. J. Geophys. Res., 33, L16805, doi:10.1029/2006GL026547.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Mohler, O., and Coauthors, 2005: Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res., 110, D11210, doi:10.1029/2004JD005169.

    • Search Google Scholar
    • Export Citation
  • Mohler, O., P. J. DeMott, G. Vali, and Z. Levin, 2007: Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences, 4, 10591071.

    • Search Google Scholar
    • Export Citation
  • Morris, C. E., D. C. Sands, M. Bardin, R. Jaenicke, B. Vogel, C. Leyronas, P. A. Ariya, and R. Psenner, 2011: Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 1725.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1968: Comparison between concentration of ice crystals in cloud and the concentration of ice nuclei. J. Rech. Atmos., 3, 119124.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1976: Production of secondary ice particles during the growth of graupel by riming. Quart. J. Roy. Meteor. Soc., 102, 4557.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1978a: Some factors governing ice particle multiplication in cumulus clouds. J. Atmos. Sci., 35, 20332037.

  • Mossop, S. C., 1978b: The influence of drop size distribution on the production of secondary ice particles during graupel growth. Quart. J. Roy. Meteor. Soc., 104, 323330.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1985: The origin and concentration of ice crystals in clouds. Bull. Amer. Meteor. Soc., 66, 264273.

  • Mossop, S. C., and E. R. Wishart, 1978: The mechanism of splintering during rime growth. Geophys. Res. Lett., 5, 10831085.

  • O’Dowd, C. D., M. H. Smith, I. E. Consterdine, and J. A. Lowe, 1997: Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmos. Environ., 37, 7380.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2009: Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically. Biogeosciences, 6, 9871014.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401.

  • Pratt, K. A., and Coauthors, 2010: In situ chemical characterization of aged biomass-burning aerosols impacting cloud wave clouds. J. Atmos. Sci., 67, 24512468.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2009: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci., 2, 402405.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Qian, Y., K. Willeke, V. Ulevicius, S. A. Grinshpun, and J. Donnelly, 1995: Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration. Atmos. Environ., 29, 11231129.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc., 117, 207241.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131, 639673.

    • Search Google Scholar
    • Export Citation
  • Richardson, M., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rodts, S. M. A., P. G. Duynkerke, and H. J. J. Jonker, 2003: Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci., 60, 18951912.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and P. K. Smolarkiewicz, 1996: A synchronous and iterative flux-correction formalism for coupled transport equations. J. Comput. Phys., 128, 101120.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated thunderstorm. Part II: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395420.

    • Search Google Scholar
    • Export Citation
  • Sesartic, A., U. Lohmann, and T. Storelvmo, 2011: Bacteria in the ECHAM5-HAM global climate model. Atmos. Chem. Phys. Discuss., 11, 14571488.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2008: Ice initiation and ice multiplication processes in a warm-based precipitating cumulus cloud model. Ph.D. thesis, McGill University, 221 pp. [Available online at http://digitool.library.mcgill.ca/R/D2GKK6X24IDAR95I1B2JFJNRTFYFS4E6HKUUNSVEV2MI1GMDVH-01083?func=results-jump-full&set_entry=000005&set_number=001334&base=GEN01-MCG02.]

  • Sun, J., and P. A. Ariya, 2006: Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ., 40, 795820.

    • Search Google Scholar
    • Export Citation
  • Sun, J., P. A. Ariya, H. G. Leighton, and M. K. Yau, 2010: Mystery of ice multiplication in warm-based precipitating shallow cumulus clouds. Geophys. Res. Lett., 37, L10802, doi:10.1029/2010GL042440.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1997: Biogenic and anthropogenic sources of ice-forming nuclei: A review. Bull. Amer. Meteor. Soc., 78, 209228.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. R., 1989: Sulfate production and deposition in midlatitude continental cumulus clouds. Part I: Cloud model formulation and base run analysis. J. Atmos. Sci., 46, 19711990.

    • Search Google Scholar
    • Export Citation
  • Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 6780.

    • Search Google Scholar
    • Export Citation
  • Tong, Y., and B. Lightart, 2000: The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Sci. Technol., 32, 393403.

    • Search Google Scholar
    • Export Citation
  • Vali, G., M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, 1976: Biogenic ice nuclei. Part II: Bacteria sources. J. Atmos. Sci., 33, 15651570.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J. Climate, 20, 717738.

    • Search Google Scholar
    • Export Citation
  • Welti, A., F. Luond, O. Stetzer, and U. Lohmann, 2009: Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys., 9, 67056715.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., 1979: Perturbation pressure and cumulus convection. J. Atmos. Sci., 36, 690694.

  • Yau, M. K., 1980: A two-cylinder model of cumulus cells and its application in computing cumulus transports. J. Atmos. Sci., 37, 24702485.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and G. R. Carmichael, 1999: The role of mineral aerosol in tropospheric chemistry in East Asia—A model study. J. App. Meteor., 38, 353366.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. J. Atmos. Sci., 62, 12911310.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 58 6
PDF Downloads 92 45 5

Modeling Study of Ice Formation in Warm-Based Precipitating Shallow Cumulus Clouds

View More View Less
  • 1 Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 2 Department of Atmospheric and Oceanic Sciences, and Department of Chemistry, McGill University, Montreal, Quebec, Canada
  • | 3 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Restricted access

Abstract

Observations of large concentrations of ice particles in the dissipating stage of warm-based precipitating shallow cumulus clouds point to the limitations of scientists’ understanding of the physics of such clouds and the possible role of cloud dynamics. The most commonly accepted mechanisms of ice splinter production in the riming process have limitations to properly explain the rapid production of ice bursts. A more detailed description of the temporal and spatial evolution of hydrometeors and their interaction with cloud condensation nuclei and ice nuclei is needed to understand this phenomenon. A cloud model with bin-resolved microphysics can describe the time-dependent evolution of liquid droplets and ice particles and provide insights into how the physics and dynamics and their interaction may result in ice initiation and ice multiplication. The authors developed a 1.5-dimensional nonhydrostatic convective cloud and aerosol interaction model with spectral (bin) microphysics. The number and mass concentrations of aerosols, including ice nuclei and cloud condensation nuclei, were explicitly followed. Since both in situ observations of bioaerosols and laboratory experiments pointed to efficient nucleation capabilities at relative warm temperatures, it was assumed that ice-nucleating bioaerosols are involved in primary ice particle formation in condensation and immersion modes. Results show that bioaerosols can be the source of primary ice pellets, which in turn lead to high ice concentrations.

Corresponding author address: Jiming Sun, Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: jimings@mail.iap.ac.cn

Abstract

Observations of large concentrations of ice particles in the dissipating stage of warm-based precipitating shallow cumulus clouds point to the limitations of scientists’ understanding of the physics of such clouds and the possible role of cloud dynamics. The most commonly accepted mechanisms of ice splinter production in the riming process have limitations to properly explain the rapid production of ice bursts. A more detailed description of the temporal and spatial evolution of hydrometeors and their interaction with cloud condensation nuclei and ice nuclei is needed to understand this phenomenon. A cloud model with bin-resolved microphysics can describe the time-dependent evolution of liquid droplets and ice particles and provide insights into how the physics and dynamics and their interaction may result in ice initiation and ice multiplication. The authors developed a 1.5-dimensional nonhydrostatic convective cloud and aerosol interaction model with spectral (bin) microphysics. The number and mass concentrations of aerosols, including ice nuclei and cloud condensation nuclei, were explicitly followed. Since both in situ observations of bioaerosols and laboratory experiments pointed to efficient nucleation capabilities at relative warm temperatures, it was assumed that ice-nucleating bioaerosols are involved in primary ice particle formation in condensation and immersion modes. Results show that bioaerosols can be the source of primary ice pellets, which in turn lead to high ice concentrations.

Corresponding author address: Jiming Sun, Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: jimings@mail.iap.ac.cn
Save