• Acevedo, O. C., F. D. Costa, and G. A. Degrazia, 2012: The coupling state of an idealized stable boundary layer. Bound.-Layer Meteor., 145, 211228, doi:10.1007/s10546-011-9676-3.

    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. Van de Wiel, L. van den Brink, and A. A. M. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Search Google Scholar
    • Export Citation
  • Baklanov, and Coauthors, 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887.

  • Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J.-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119, 473500.

    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. M. Holtslag, B. J. H. Van de Wiel, A. F. Moene, and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys., 56, 8899.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., and A. Weill, 1993: Some aspects of determining the stable boundary layer depth from sodar data. Bound.-Layer Meteor., 63, 97116.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Brunt, P., 1941: Physical and Dynamical Meteorology. Cambridge University Press, 428 pp.

  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 67–98.

  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 427432.

    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., 1994: Analytic solutions of the equations governing the temperature fluctuation method. Bound.-Layer Meteor., 68, 427432.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statistically stable conditions. Bound.-Layer Meteor., 82, 2348.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., P. A. Bartlett, and J. H. McCaughey, 2002: Study of ‘soft’ night-time surface-layer decoupling over forest canopies in a land-surface model. Bound.-Layer Meteor., 103, 253276.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J. Roy. Meteor. Soc., 116, 127158.

  • Derbyshire, S. H., 1999a: Boundary-layer decoupling over cold surfaces as a physical boundary instability. Bound.-Layer Meteor., 90, 297325.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999b: Stable boundary layer modeling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446.

  • Donda, J. M. M., B. J. H. Van de Wiel, F. C. Bosveld, F. Beyrich, G. J. F. van Heijst, and H. J. H. Clercx, 2012: Predicting nocturnal wind and temperature profiles based on external forcing parameters. Bound.-Layer Meteor., doi:10.1007/s10546-012-9755-0, in press.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 2004: Hydrodynamic Stability. Cambridge University Press, 605 pp.

  • Duynkerke, P. G., 1999: Turbulence, radiation and fog in Dutch stable boundary layer. Bound.-Layer Meteor., 90, 447477.

  • Edwards, J. M., 2009: Radiative processes in the stable boundary layer: Part II. The development of the nocturnal boundary layer. Bound.-Layer Meteor., 131, 127146.

    • Search Google Scholar
    • Export Citation
  • England, D. E., and R. T. McNider, 1995: Stability functions based upon shear functions. Bound.-Layer Meteor., 74, 113130.

  • Estournel, C., and D. Guedalia, 1985: Influence of geostrophic wind on atmospheric nocturnal cooling. J. Atmos. Sci., 42, 26952700.

  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484.

  • Flores, O., and J. J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteor., 139, 241259.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569.

    • Search Google Scholar
    • Export Citation
  • Heusinkveld, B. G., A. F. G. Jacobs, A. A. M. Holtslag, and S. M. Berkowicz, 2004: Surface energy balance closure in an arid region: Role of soil and heat flux. Agric. For. Meteor., 122, 2137.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246.

  • Holtslag, A. A. M., and F. T. M. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36, 201209.

  • Holtslag, A. A. M., and H. A. R. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., G.-J. Steeneveld, and B. J. H. Van de Wiel, 2007: Role of land-surface temperature feedback on model performance for the stable boundary layer. Bound.-Layer Meteor., 118, 103116.

    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., and J. Cuxart, 2005: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: Range of applicability. Bound.-Layer Meteor., 115, 241261.

    • Search Google Scholar
    • Export Citation
  • King, J. C., and W. M. Connolly, 1997: Validation of the surface energy balance over the Antarctic Ice Sheets in the U.K. Meteorological Office Unified Climate Model. J. Climate, 10, 12731287.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 11 05211 068.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2008: Fluid Mechanics. 4th ed. Academic Press, 872 pp.

  • Lapworth, A., 2008: The evening wind. Weather, 63, 1214.

  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mahrt, L., 2011: The near-calm stable boundary layer. Bound.-Layer Meteor., 140, 343360, doi:10.1007/s10546-011-9616-2.

  • Mahrt, L, J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary layer regimes. Bound.-Layer Meteor., 88, 255278.

  • Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645655.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 19631987.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107, 127.

  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216.

  • Nieuwstadt, F. T. M., 1985: A model for the stationary, stable boundary layer. Turbulence and Diffusion in Stable Environments: Based on the Proceedings of a Conference on Models of Turbulence and Diffusion in Stably Stratified Regions of the Natural Environment, J. C. R. Hunt, Ed., Oxford University Press, 149–179.

  • Nieuwstadt, F. T. M., 2005: Direct numerical simulation of stable channel flow at large stability. Bound.-Layer Meteor., 116, 277299.

    • Search Google Scholar
    • Export Citation
  • Ohya, Y., D. E. Neff, and R. N. Merony, 1997: Turbulence structure in a stratified boundary layer under stable conditions. Bound.-Layer Meteor., 83, 139161.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581.

    • Search Google Scholar
    • Export Citation
  • Revelle, D. O., 1993: Chaos and ‘‘bursting’’ in the planetary boundary layer. J. Appl. Meteor., 32, 11691180.

  • Schubert, J. F., 1977: Acoustic detection of momentum transfer during the abrupt transition from a laminar to a turbulent atmospheric boundary layer. J. Atmos. Sci., 16, 12921297.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., 1988: Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteor., 44, 231253.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2006: Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63, 15261537.

  • Steeneveld, G. J., B. J. H. Van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2003: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layer. Bound.-Layer Meteor., 110, 255279.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Bound.-Layer Meteor., 140, 177206.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. A., 1971: A note on the log-linear velocity profile in stable conditions. Quart. J. Roy. Meteor. Soc., 97, 326329.

  • Van de Wiel, B. J. H., R. J. Ronda, A. F. Moene, H. A. R. De Bruin, and A. A. M. Holtslag, 2002a: Intermittent turbulence and oscillations in the stable boundary layer. Part I: A bulk model. J. Atmos. Sci., 59, 942958.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, R. J. Ronda, H. A. R. De Bruin, and A. A. M. Holtslag, 2002b: Intermittent turbulence and oscillations in the stable boundary layer. Part II: A system dynamics approach. J. Atmos. Sci., 59, 25672581.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence and oscillations in the stable boundary layer. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115.

    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969.

  • Walters, J. T., R. T. McNider, X. Shi, W. B. Norris, and J. R. Christy, 2007: Positive surface temperature feedback in the stable nocturnal boundary layer. Geophys. Res. Lett., 34, L12709, doi:10.1029/2007GL029505.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1989: Shapes of annual frequency distributions of wind speed observed on high meteorological masts. Bound.-Layer Meteor., 47, 85110.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Zhou, B., and F. K. Chow, 2011: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 68, 21422155.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulent energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 707 469 11
PDF Downloads 387 186 7

The Minimum Wind Speed for Sustainable Turbulence in the Nocturnal Boundary Layer

View More View Less
  • 1 * Fluid Dynamics Laboratory, Eindhoven University of Technology, Eindhoven, Netherlands
  • | 2 Department of Meteorology and Air Quality, Wageningen University, Wageningen, Netherlands
  • | 3 Applied Physics, Delft University of Technology, Delft, Netherlands
  • | 4 Atmospheric Research Division, Department of Climate and Seismology, Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
  • | 5 Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
  • | 6 ** National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

The collapse of turbulence in the nocturnal boundary layer is studied by means of a simple bulk model that describes the basic physical interactions in the surface energy balance. It is shown that for a given mechanical forcing, the amount of turbulent heat that can be transported downward is limited to a certain maximum. In the case of weak winds and clear skies, this maximum can be significantly smaller than the net radiative loss minus soil heat transport. In the case when the surface has low heat capacity, this imbalance generates rapid surface cooling that further suppresses the turbulent heat transport, so that eventually turbulence largely ceases (positive feedback mechanism). The model predicts the minimum wind speed for sustainable turbulence for the so-called crossing level. At this level, some decameters above the surface, the wind is relatively stationary compared to lower and higher levels. The critical speed is predicted in the range of about 5–7 m s−1, depending on radiative forcing and surface properties, and is in agreement with observations at Cabauw. The critical value appears not very sensitive to model details or to the exact values of the input parameters. Finally, results are interpreted in terms of external forcings, such as geostrophic wind. As it is generally larger than the speed at crossing height, a 5 m s−1 geostrophic wind may be considered as the typical limit below which sustainable, continuous turbulence under clear-sky conditions is unlikely to exist. Below this threshold emergence of the very stable nocturnal boundary layer is anticipated.

Corresponding author address: B. J. H. Van de Wiel, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands. E-mail: b.j.h.v.d.wiel@tue.nl

Abstract

The collapse of turbulence in the nocturnal boundary layer is studied by means of a simple bulk model that describes the basic physical interactions in the surface energy balance. It is shown that for a given mechanical forcing, the amount of turbulent heat that can be transported downward is limited to a certain maximum. In the case of weak winds and clear skies, this maximum can be significantly smaller than the net radiative loss minus soil heat transport. In the case when the surface has low heat capacity, this imbalance generates rapid surface cooling that further suppresses the turbulent heat transport, so that eventually turbulence largely ceases (positive feedback mechanism). The model predicts the minimum wind speed for sustainable turbulence for the so-called crossing level. At this level, some decameters above the surface, the wind is relatively stationary compared to lower and higher levels. The critical speed is predicted in the range of about 5–7 m s−1, depending on radiative forcing and surface properties, and is in agreement with observations at Cabauw. The critical value appears not very sensitive to model details or to the exact values of the input parameters. Finally, results are interpreted in terms of external forcings, such as geostrophic wind. As it is generally larger than the speed at crossing height, a 5 m s−1 geostrophic wind may be considered as the typical limit below which sustainable, continuous turbulence under clear-sky conditions is unlikely to exist. Below this threshold emergence of the very stable nocturnal boundary layer is anticipated.

Corresponding author address: B. J. H. Van de Wiel, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands. E-mail: b.j.h.v.d.wiel@tue.nl
Save