• Aksoy, A., F. Zhang, and J. Nielsen-Gammon, 2006a: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134, 29512970.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., F. Zhang, and J. Nielsen-Gammon, 2006b: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903.

  • Andrejczuk, M., J. Reisner, B. Henson, M. Dubey, and C. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, doi:10.1029/2007JD009445.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005: Parameter estimation in an intermediate complexity Earth system model using an ensemble Kalman filter. Ocean Modell., 8, 135154.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., and P. van Leeuwen, 1996: Assimilation of Geosat altimeter data for the Agulhas Current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev., 124, 8596.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Godinez, H., and J. Moulton, 2012: An efficient matrix-free algorithm for the ensemble Kalman filter. Comput. Geosci., 16, 565575, doi:10.1007/s10596-011-9268-9.

    • Search Google Scholar
    • Export Citation
  • Guimond, S., M. Bourassa, and P. Reasor, 2011: A latent heat retrieval and its effects on the intensity and structure change of Hurricane Guillermo (1997). Part I: The algorithm and observations. J. Atmos. Sci., 68, 15491567.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P., and H. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

  • Hu, X.-M., F. Zhang, and J. W. Nielsen-Gammon, 2010: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, doi:10.1029/2010GL043017.

    • Search Google Scholar
    • Export Citation
  • Leonard, B., and J. Drummond, 1995: Why you should not use ‘hybrid’, ‘power-law’ or related exponential schemes for convective modeling—There are better alternatives. Int. J. Numer. Methods Fluids, 20, 421442.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., and R. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 777794.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J., X. Hu, F. Zhang, and J. Pleim, 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 34003417.

    • Search Google Scholar
    • Export Citation
  • Reasor, P., M. Eastin, and J. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., and C. Jeffery, 2009: A smooth cloud model. Mon. Wea. Rev., 137, 18251843.

  • Reisner, J., A. Mousseau, A. Wyszogrodzki, and D. Knoll, 2005: An implicitly balanced hurricane model with physics-based preconditioning. Mon. Wea. Rev., 133, 10031022.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and G. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 16491668.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009: Ensemble data assimilation applied to RAINEX observations of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 28172829.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. Stensrud, 2012: Comparison of single-parameter and multiparameter ensembles for assimilation of radar observations using the ensemble Kalman filter. Mon. Wea. Rev., 140, 562586.

    • Search Google Scholar
    • Export Citation
  • Zalesak, S., 1979: Fully multidimensional flux-corrected transport algorithm for fluids. J. Comput. Phys., 31, 335362.

  • Zhang, F., Y. Weng, J. Sippel, Z. Meng, and C. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Y. Wu, and P. S. Ray, 2010: Verification of a high-resolution model forecast using airborne Doppler radar analysis during the rapid intensification of Hurricane Guillermo. J. Appl. Meteor. Climatol., 49, 807820.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 105 5
PDF Downloads 39 27 2

Determining Key Model Parameters of Rapidly Intensifying Hurricane Guillermo (1997) Using the Ensemble Kalman Filter

View More View Less
  • 1 Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 2 Space and Remote Sensing Group, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, and NOAA/Cooperative Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
  • | 3 Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida
  • | 4 Los Alamos National Laboratory, Los Alamos, New Mexico
Restricted access

Abstract

In this work the authors determine key model parameters for rapidly intensifying Hurricane Guillermo (1997) using the ensemble Kalman filter (EnKF). The approach is to utilize the EnKF as a tool only to estimate the parameter values of the model for a particular dataset. The assimilation is performed using dual-Doppler radar observations obtained during the period of rapid intensification of Hurricane Guillermo. A unique aspect of Guillermo was that during the period of radar observations strong convective bursts, attributable to wind shear, formed primarily within the eastern semicircle of the eyewall. To reproduce this observed structure within a hurricane model, background wind shear of some magnitude must be specified and turbulence and surface parameters appropriately specified so that the impact of the shear on the simulated hurricane vortex can be realized. To identify the complex nonlinear interactions induced by changes in these parameters, an ensemble of model simulations have been conducted in which individual members were formulated by sampling the parameters within a certain range via a Latin hypercube approach. The ensemble and the data, derived latent heat and horizontal winds from the dual-Doppler radar observations, are utilized in the EnKF to obtain varying estimates of the model parameters. The parameters are estimated at each time instance, and a final parameter value is obtained by computing the average over time. Individual simulations were conducted using the estimates, with the simulation using latent heat parameter estimates producing the lowest overall model forecast error.

Corresponding author address: Humberto C. Godinez, Los Alamos National Laboratory, MS B284, Los Alamos, NM 87545. E-mail: hgodinez@lanl.gov

Abstract

In this work the authors determine key model parameters for rapidly intensifying Hurricane Guillermo (1997) using the ensemble Kalman filter (EnKF). The approach is to utilize the EnKF as a tool only to estimate the parameter values of the model for a particular dataset. The assimilation is performed using dual-Doppler radar observations obtained during the period of rapid intensification of Hurricane Guillermo. A unique aspect of Guillermo was that during the period of radar observations strong convective bursts, attributable to wind shear, formed primarily within the eastern semicircle of the eyewall. To reproduce this observed structure within a hurricane model, background wind shear of some magnitude must be specified and turbulence and surface parameters appropriately specified so that the impact of the shear on the simulated hurricane vortex can be realized. To identify the complex nonlinear interactions induced by changes in these parameters, an ensemble of model simulations have been conducted in which individual members were formulated by sampling the parameters within a certain range via a Latin hypercube approach. The ensemble and the data, derived latent heat and horizontal winds from the dual-Doppler radar observations, are utilized in the EnKF to obtain varying estimates of the model parameters. The parameters are estimated at each time instance, and a final parameter value is obtained by computing the average over time. Individual simulations were conducted using the estimates, with the simulation using latent heat parameter estimates producing the lowest overall model forecast error.

Corresponding author address: Humberto C. Godinez, Los Alamos National Laboratory, MS B284, Los Alamos, NM 87545. E-mail: hgodinez@lanl.gov
Save