• Ahmed, N., T. Natarajan, and K. R. Rao, 1974: Discrete cosine transform. IEEE Trans. Comput., C23, 9093.

  • Austin, G. L., and A. Bellon, 1974: The use of digital weather radar records for short-term precipitation forecasting. Quart. J. Roy. Meteor. Soc., 100, 658664.

    • Search Google Scholar
    • Export Citation
  • Barclay, P. A., and K. E. Wilk, 1970: Severe thunderstorm radar echo motion and related weather events hazardous to aviation operations. ESSA Tech. Memo. ERLTM-NSSL 46, 63 pp. [Available from National Information Service, Operations Division, Springfield, VA 22161.]

  • Bellon, A., and G. L. Austin, 1978: The evaluation of two years of real-time operation of a short-term precipitation forecasting procedure (SHARP). J. Appl. Meteor., 17, 17781787.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., C. E. Pierce, and A. Seed, 2004: Development of a precipitation nowcasting algorithm based on optical flow techniques. J. Hydrol., 288, 7491.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., C. G. Collier, P. R. Larke, P. Menmuir, G. A. Monk, and R. G. Owens, 1982: On the forecasting of frontal rain using a weather radar network. Mon. Wea. Rev., 110, 534552.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056.

    • Search Google Scholar
    • Export Citation
  • Chornoboy, E. S., A. M. Matlin, and J. P. Morgan, 1994: Automated storm tracking for terminal air traffic control. Lincoln Lab. J., 7, 427448.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797.

    • Search Google Scholar
    • Export Citation
  • Duda, R. O., and R. H. Blackmer, 1972: Applications of pattern recognition techniques to digitized weather radar data. Stanford Research Institute Final Rep. SRI Project 1287, Contract I-36092, 135 pp. [Available from National Information Service, Operations Division, Springfield, VA 22161.]

  • Dupree, W. J., and Coauthors, 2009: The 2008 CoSPA forecast demonstration collaboration storm prediction for aviation. [Available online at https://ams.confex.com/ams/89annual/techprogram/paper_151488.htm.]

  • Forman, B. E., M. M. Wolfson, R. G. Hallowell, and M. P. Moore, 1999: Aviation user needs for convective weather forecasts. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 14.4. [Available online at https://ams.confex.com/ams/99annual/abstracts/1277.htm.]

  • Fox, N. I., and C. K. Wikle, 2005: A Bayesian quantitative precipitation nowcast scheme. Wea. Forecasting, 20, 264275.

  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteor., 43, 7489.

    • Search Google Scholar
    • Export Citation
  • Germann, U., I. Zawadzki, and B. J. Turner, 2006: Predictability of precipitation from continental radar images. Part IV: Limits to prediction. J. Atmos. Sci., 63, 20922108.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., and R. E. Woods, 1992: Digital Image Processing. Addison-Wesley, 716 pp.

  • Handwerker, J., 2002: Cell tracking with TRACE3D—A new algorithm. Atmos. Res., 61, 1534.

  • Henry, S. G., 1993: Analysis of thunderstorm lifetime as a function of size and intensity. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 138–140.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, 88 pp.

  • Li, P. W., and E. S. Lai, 2004: Short-range quantitative precipitation forecasting in Hong Kong. J. Hydrol., 288, 189209.

  • Martin, R., 1989: A statistic useful for characterizing probability distributions, with application to rain rate data. J. Appl. Meteor., 28, 354360.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and J. A. Jones, 1993: An approach to estimate the areal rain-rate distribution from spaceborne radar by the use of multiple thresholds. J. Appl. Meteor., 32, 386398.

    • Search Google Scholar
    • Export Citation
  • Mueller, C., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR Auto-Nowcast System. Wea. Forecasting, 18, 545561.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanandan, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 2036.

    • Search Google Scholar
    • Export Citation
  • Ruzanski, E., V. Chandrasekar, and Y. Wang, 2011: The CASA nowcasting system. J. Atmos. Oceanic Technol., 28, 640655.

  • Seed, A., 2003: A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteor., 42, 381388.

  • Tsonis, A. A., and G. L. Austin, 1981: An evaluation of extrapolation techniques for the short-term prediction of rain amounts. Atmos.–Ocean, 19, 5465.

    • Search Google Scholar
    • Export Citation
  • Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248.

    • Search Google Scholar
    • Export Citation
  • Walton, M. L., P. R. Ahnert, and M. D. Hudlow, 1985: Proposed onsite flash flood potential system for NEXRAD. Preprints, Sixth Conf. on Hydrometeorology, Indianapolis, IN, Amer. Meteor. Soc., 122–129.

  • Wilson, J. W., 1966: Movement and predictability of radar echoes. National Severe Storms Laboratory Tech. Memo. ERTM-NSSL-28, 30 pp. [Available from National Information Service, Operations Division, Springfield, VA 22161.]

  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 15071525.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099.

    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., B. E. Forman, R. G. Hallowell, and M. P. Moore, 1999: The growth and decay storm tracker. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 4.3. [Available online at https://ams.confex.com/ams/99annual/abstracts/1494.htm.]

  • Wolfson, M. M., W. J. Dupree, R. M. Rasmussen, M. Steiner, S. G. Benjamin, and S. Weygandt, 2008: Consolidated storm prediction for aviation (CoSPA). Preprints, 13th Conf. on Aviation, Range, and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., J6.5. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_132981.htm.]

  • Zawadzki, I., 1973: Statistical properties of precipitation patterns. J. Appl. Meteor., 12, 459472.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 112 11
PDF Downloads 172 90 15

Predictability of Precipitation from Continental Radar Images. Part V: Growth and Decay

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
Restricted access

Abstract

In a Lagrangian frame of reference, the accuracy of rainfall systems predicted by nowcasting algorithms can be improved by incorporating the growth and decay of the rainfall. The scale dependence of predictability of growth and decay of continental-scale precipitating systems is studied with the help of the U.S. national radar composites. The growth and decay of precipitating systems is estimated in a time interval τ by correcting the precipitation image for advection and rotation at time t + τ with respect to the precipitation image at time t and then subtracting the former from the latter. Results show that the two-dimensional correlation of growth and decay has an elliptical structure, indicating that growth and decay is nonisotropic. The probability density function of precipitation intensities and of growth and decay follows a Gaussian distribution. The scale-dependence analysis of growth and decay patterns indicates that the growth and decay of rainfall may be predictable up to about 2 h for scales larger than 250 km.

Corresponding author address: Dr. B. Radhakrishna, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal QC H3A 2K6, Canada. E-mail: rakibasivi@gmail.com

Abstract

In a Lagrangian frame of reference, the accuracy of rainfall systems predicted by nowcasting algorithms can be improved by incorporating the growth and decay of the rainfall. The scale dependence of predictability of growth and decay of continental-scale precipitating systems is studied with the help of the U.S. national radar composites. The growth and decay of precipitating systems is estimated in a time interval τ by correcting the precipitation image for advection and rotation at time t + τ with respect to the precipitation image at time t and then subtracting the former from the latter. Results show that the two-dimensional correlation of growth and decay has an elliptical structure, indicating that growth and decay is nonisotropic. The probability density function of precipitation intensities and of growth and decay follows a Gaussian distribution. The scale-dependence analysis of growth and decay patterns indicates that the growth and decay of rainfall may be predictable up to about 2 h for scales larger than 250 km.

Corresponding author address: Dr. B. Radhakrishna, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal QC H3A 2K6, Canada. E-mail: rakibasivi@gmail.com
Save