• Acevedo, O. C., and D. R. Fitzjarrald, 2003: In the core of the night - Effects of intermittent mixing on a horizontally heterogeneous surface. Bound.-Layer Meteor., 106, 133.

    • Search Google Scholar
    • Export Citation
  • Acevedo, O. C., F. D. Costa, and G. A. Degrazia, 2012: The coupling state of an idealized stable boundary layer. Bound.-Layer Meteor., 145, 211228, doi:10.1007/s10546-011-9676-3.

    • Search Google Scholar
    • Export Citation
  • Baas, P., B. J. H. van de Wiel, L. van den Brink, and A. A. M. Holtslag, 2012: Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quart. J. Roy. Meteor. Soc., 138, 528535, doi:10.1002/qj.941.

    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A., and Coauthors, 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887.

  • Banta, R. M., L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, 2007: The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci., 64, 30683090.

    • Search Google Scholar
    • Export Citation
  • Basu, S., F. Porté-Agel, E. Foufoula-Georgiou, J.-F. Vinuesa, and M. Pahlow, 2006: Revisiting the local scaling hypothesis in stably stratified atmospheric boundary layer turbulence: An integration of field and laboratory measurements with large-eddy simulations. Bound.-Layer Meteor., 119, 473500.

    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. M. Holtslag, B. J. H. van de Wiel, A. F. Moene, and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys., 56, 8899.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and M. K. Macvean, 2004: Resolution sensitivity and scaling of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 112, 257281.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers: Proceedings of the Colloquium Clear and Cloudy Boundary Layers, A. A. M. Holtslag, P. G. Duynkerke, and P. J. Jonker, Eds., Royal Netherlands Academy of Arts and Sciences, 287–304.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. A. Haugeri, Ed., Amer. Meteor. Soc., 67–98.

  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 427432.

    • Search Google Scholar
    • Export Citation
  • De Bruin, H. A. R., 1994: Analytic solutions of the equations governing the temperature fluctuation method. Bound.-Layer Meteor., 68, 427432.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statistically stable conditions. Bound.-Layer Meteor., 82, 2348.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., P. A. Bartlett, and J. H. McCaughey, 2002: Study of ‘soft’ night-time surface-layer decoupling over forest canopies in a land-surface model. Bound.-Layer Meteor., 103, 253276.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1990: Nieuwstadt’s stable boundary layer revisited. Quart. J. Roy. Meteor. Soc., 116, 127158.

  • Derbyshire, S. H., 1999a: Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Bound.-Layer Meteor., 90, 297325.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., 1999b: Stable boundary layer modeling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446.

  • Edwards, J. M., 2009: Radiative processes in the stable boundary layer: Part II. The development of the nocturnal boundary layer. Bound.-Layer Meteor., 131, 127146.

    • Search Google Scholar
    • Export Citation
  • England, D. E., and R. T. McNider, 1995: Stability functions based upon shear functions. Bound.-Layer Meteor., 74, 113130.

  • Estournel, C., and D. Guedalia, 1985: Influence of geostrophic wind on atmospheric nocturnal cooling. J. Atmos. Sci., 42, 26952700.

  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484.

  • Flores, O., and J. J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteor., 139, 241259.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L. Andreas, and P. S. Guest, 2005: Stable boundary-layer regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2012: Outlier problem in evaluating similarity functions in the stable atmospheric boundary layer. Bound.-Layer Meteor., 144, 137155, doi:10.1007/s10546-012-9714-9.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246.

  • Holtslag, A. A. M., and A. P. Van Ulden, 1982: Simple estimates of nighttime surface fluxes from routine weather data. Royal Netherlands Meteorological Institute Scientific Rep. 82-4, 11 pp.

  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512.

  • Jiménez, M., and J. Cuxart, 2005: Large-eddy simulations of the stable boundary layer using the standard Kolmogorov theory: Range of applicability. Bound.-Layer Meteor., 115, 241261.

    • Search Google Scholar
    • Export Citation
  • King, J. C., and W. M. Connolly, 1997: Validation of the surface energy balance over the Antarctic Ice Sheets in the U.K. Meteorological Office Unified Climate Model. J. Climate, 10, 12731287.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2008: Fluid Mechanics. 4th ed. Academic Press, 872 pp.

  • Mahrt, L., 1981: The early evening boundary layer transition. Quart. J. Roy. Meteor. Soc., 107, 329343.

  • Mahrt, L., 2011: The near-calm stable boundary layer. Bound.-Layer Meteor., 140, 343360.

  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939.

  • Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley, 1998: Nocturnal boundary layer regimes. Bound.-Layer Meteor., 88, 255278.

  • Mahrt, L., S. Richardson, N. Seaman, and D. Stauffer, 2012: Turbulence in the nocturnal boundary layer with light and variable winds. Quart. J. Roy. Meteor. Soc., 138, 14301439, doi:10.1002/qj.1884.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y. S., 1995: The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor., 74, 389396.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645655.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and R. A. Pielke, 1981: Diurnal boundary layer development over sloping terrain. J. Atmos. Sci., 38, 21982212.

  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508.

  • Moene, A. F., B. J. H. Van de Wiel, and H. J. J. Jonker, 2010: Local similarity profiles from direct numerical simulation. Preprints, 19th Symp. on Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc., 3A.2. [Available online at https://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_172247.htm.]

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 19631987.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216.

  • Nieuwstadt, F. T. M., 2005: Direct numerical simulation of stable channel flow at large stability. Bound.-Layer Meteor., 116, 277299.

    • Search Google Scholar
    • Export Citation
  • Ohya, Y., D. E. Neff, and R. N. Merony, 1997: Turbulence structure in a stratified boundary layer under stable conditions. Bound.-Layer Meteor., 83, 139161.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581.

    • Search Google Scholar
    • Export Citation
  • Revelle, D. O., 1993: Chaos and “bursting” in the planetary boundary layer. J. Atmos. Meteor., 32, 11691180.

  • Schubert, J. F., 1977: Acoustic detection of momentum transfer during the abrupt transition from a laminar to a turbulent atmospheric boundary layer. J. Atmos. Meteor., 16, 12921297.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2008: Coriolis effects in homogeneous and inhomogeneous katabatic flows. Quart. J. Roy. Meteor. Soc., 134, 353370.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and E. Fedorovich, 2010: Analytical description of a nocturnal low-level jet. Quart. J. Roy. Meteor. Soc., 136, 12551262.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., H. Bergström, and B. Grisogono, 1997: Evolution of stable internal boundary layers over a cold sea. J. Geophys. Res., 102, 10911099.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2006: Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63, 15261537.

  • Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 136, 12431254.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2006: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2003a: Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound.-Layer Meteor., 110, 255279.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. P. Burns, A. C. Delany, S. P. Oncley, T. W. Horst, and D. H. Lenshow, 2003b: Heat balance in the nocturnal boundary layer during CASES-99. J. Appl. Meteor., 42, 16491666.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Bound.-Layer Meteor., 140, 177206.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. A., 1971: A note on the log-linear velocity profile in stable conditions. Quart. J. Roy. Meteor. Soc., 97, 326329.

  • Van de Wiel, B. J. H., R. J. Ronda, A. F. Moene, H. A. R. De Bruin, and A. A. M. Holtslag, 2002a: Intermittent turbulence and oscillations in the stable boundary layer. Part I: A bulk model. J. Atmos. Sci., 59, 942958.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, R. J. Ronda, H. A. R. De Bruin, and A. A. M. Holtslag, 2002b: Intermittent turbulence and oscillations in the stable boundary layer. Part II: A system dynamics approach. J. Atmos. Sci., 59, 25672581.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. De Bruin, and A. A. M. Holtslag, 2003: Intermittent turbulence and oscillations in the stable boundary layer. Part III: A classification for observations during CASES99. J. Atmos. Sci., 60, 25092522.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, W. H. De Ronde, and H. J. J. Jonker, 2008: Local similarity in the stable boundary layer and mixing-length approaches: Consistency of concepts. Bound.-Layer Meteor., 128, 103116.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, S. Sun, and A. A. M. Holtslag, 2012: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1989: Shapes of annual frequency distributions of wind speed observed on high meteorological masts. Bound.-Layer Meteor., 47, 85110.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2011: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 68, 21422155.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulent energetic in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 110 8
PDF Downloads 172 77 6

The Cessation of Continuous Turbulence as Precursor of the Very Stable Nocturnal Boundary Layer

View More View Less
  • 1 Fluid Dynamics Laboratory, Eindhoven University of Technology, Eindhoven, Netherlands
  • | 2 Department of Meteorology and Air Quality, Wageningen University, Wageningen, Netherlands
  • | 3 Applied Physics, Delft University of Technology, Delft, Netherlands
Restricted access

Abstract

The mechanism behind the collapse of turbulence in the evening as a precursor to the onset of the very stable boundary layer is investigated. To this end a cooled, pressure-driven flow is investigated by means of a local similarity model. Simulations reveal a temporary collapse of turbulence whenever the surface heat extraction, expressed in its nondimensional form h/L, exceeds a critical value. As any temporary reduction of turbulent friction is followed by flow acceleration, the long-term state is unconditionally turbulent. In contrast, the temporary cessation of turbulence, which may actually last for several hours in the nocturnal boundary layer, can be understood from the fact that the time scale for boundary layer diffusion is much smaller than the time scale for flow acceleration. This limits the available momentum that can be used for downward heat transport. In case the surface heat extraction exceeds the so-called maximum sustainable heat flux (MSHF), the near-surface inversion rapidly increases. Finally, turbulent activity is largely suppressed by the intense density stratification that supports the emergence of a different, calmer boundary layer regime.

Corresponding author address: B. J. H. Van de Wiel, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands. E-mail: b.j.h.v.d.wiel@tue.nl

Abstract

The mechanism behind the collapse of turbulence in the evening as a precursor to the onset of the very stable boundary layer is investigated. To this end a cooled, pressure-driven flow is investigated by means of a local similarity model. Simulations reveal a temporary collapse of turbulence whenever the surface heat extraction, expressed in its nondimensional form h/L, exceeds a critical value. As any temporary reduction of turbulent friction is followed by flow acceleration, the long-term state is unconditionally turbulent. In contrast, the temporary cessation of turbulence, which may actually last for several hours in the nocturnal boundary layer, can be understood from the fact that the time scale for boundary layer diffusion is much smaller than the time scale for flow acceleration. This limits the available momentum that can be used for downward heat transport. In case the surface heat extraction exceeds the so-called maximum sustainable heat flux (MSHF), the near-surface inversion rapidly increases. Finally, turbulent activity is largely suppressed by the intense density stratification that supports the emergence of a different, calmer boundary layer regime.

Corresponding author address: B. J. H. Van de Wiel, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands. E-mail: b.j.h.v.d.wiel@tue.nl
Save