• Aitchison, J., and J. A. C. Brown, 1957: The Lognormal Distribution, with Special Reference to Its Use in Economics. Cambridge University Press, 176 pp.

  • Alexander, M. J., and L. Pfister, 1995: Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett., 22, 20292032.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and H. Teitelbaum, 2007: Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. J. Geophys. Res., 112, D21103, doi:10.1029/2006JD008368.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2008: Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res., 113, D15S18, doi:10.1029/2007JD008807.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, doi:10.1029/2009GL038587.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 490 pp.

  • Baumgaertner, A. J. G., and A. J. McDonald, 2007: A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations. J. Geophys. Res., 112, D05103, doi:10.1029/2006JD007504.

    • Search Google Scholar
    • Export Citation
  • Boccara, G., A. Hertzog, R. A. Vincent, and F. Vial, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part I: Theory and simulations. J. Atmos. Sci., 65, 30423055.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2003: Equatorward propagation of intertia–gravity waves due to steady and intermittent wave sources. J. Atmos. Sci., 60, 14101419.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1997: Saturated-cascade similitude theory of gravity wave spectra. J. Geophys. Res., 102 (D25), 29 79929 817.

  • Dewan, E. M., and R. E. Good, 1986: Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res., 91 (D2), 27422748.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 2011: Explicitly stochastic parameterization of nonorographic gravity wave drag. J. Atmos. Sci., 68, 17491765.

  • Eckermann, S. D., and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286, 15341537.

  • Fritts, D. C., and W. Lu, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part II: Parameterization of wave forcing and variability. J. Atmos. Sci., 50, 36953713.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration, and constraints. J. Atmos. Sci., 50, 36853694.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., T. Tsuda, S. Kato, T. Sato, and S. Fukao, 1988: Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere. J. Atmos. Sci., 45, 17411759.

    • Search Google Scholar
    • Export Citation
  • Gille, J., and Coauthors, 2008: High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data. J. Geophys. Res., 113, D16S43, doi:10.1029/2007JD008824.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., and F. Vial, 2001: A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons 2. Gravity waves. J. Geophys. Res., 106 (D19), 22 74522 761.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., C. Souprayen, and A. Hauchecorne, 2002a: Eikonal simulations for the formation and the maintenance of atmospheric gravity wave spectra. J. Geophys. Res., 107, 4145, doi:10.1029/2001JD000815.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., F. Vial, C. R. Mechoso, C. Basdevant, and P. Cocquerez, 2002b: Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near-inertial waves. Geophys. Res. Lett., 29, 1229, doi:10.1029/2001GL014083.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., and Coauthors, 2007: Stratéole/Vorcore—Long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter. J. Atmos. Oceanic Technol., 24, 20482061.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., G. Boccara, R. A. Vincent, and F. Vial, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1991: The saturation of gravity waves in the middle atmosphere. Part II: Development of Doppler-spread theory. J. Atmos. Sci., 48, 13601379.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1993: The saturation of gravity waves in the middle atmosphere. Part IV: Cutoff of the incident wave spectrum. J. Atmos. Sci., 50, 30453060.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40, 24972507.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Hood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 405439.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86 (C10), 97079714.

  • Lorenz, M. O., 1905: Methods of measuring the concentration of wealth. Publ. Amer. Stat. Assoc., 9, 209219.

  • Lott, F., L. Guez, and P. Maury, 2012: A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere. Geophys. Res. Lett., 39, L06807, doi:10.1029/2012GL051001.

    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J. Geophys. Res., 100 (D12), 25 84125 853.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2010: Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and D. C. Fritts, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49, 101110.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., and Coauthors, 1993: Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study. J. Geophys. Res., 98 (D5), 86118638.

    • Search Google Scholar
    • Export Citation
  • Piani, C., W. A. Norton, and D. A. Stainforth, 2004: Equatorial stratospheric response to variations in deterministic and stochastic gravity wave parameterizations. J. Geophys. Res., 109, D14101, doi:10.1029/2004JD004656.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and H. Teitelbaum, 2008: Observations and simulations of a large amplitude mountain wave breaking over the Antarctic peninsula. J. Geophys. Res., 113, D16113, doi:10.1029/2007JD009739.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Arsac, A. Hertzog, L. Guez, and F. Vial, 2010: Sensitivity study for mesoscale simulations of gravity waves above Antarctica during Vorcore. Quart. J. Roy. Meteor. Soc., 136, 13711377.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and L. Guez, 2012: Gravity wave over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.1965, in press.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682.

    • Search Google Scholar
    • Export Citation
  • Sidi, C., J. Lefrère, F. Dalaudier, and J. Barat, 1988: An improved atmospheric buoyancy waves spectrum model. J. Geophys. Res., 93 (D1), 774790.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note. NCAR/TN-475+STR, 113 pp.

  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • Smith, S. A., D. C. Fritts, and T. E. VanZandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410.

    • Search Google Scholar
    • Export Citation
  • Souprayen, C., J. Vanneste, A. Hertzog, and A. Hauchecorne, 2001: Atmospheric gravity wave spectra: A stochastic approach. J. Geophys. Res., 106 (D20), 24 07124 086.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578.

  • VanZandt, T. E., and D. C. Fritts, 1989: A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys., 130, 399420.

    • Search Google Scholar
    • Export Citation
  • Vial, F., A. Hertzog, C. R. Mechoso, C. Basdevant, P. Cocquerez, V. Dubourg, and F. Nouel, 2001: A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons 1. Planetary scales. J. Geophys. Res., 106 (D19), 22 72522 743.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., A. Hertzog, G. Boccara, and F. Vial, 2007: Quasi-Lagrangian superpressure balloon measurements of gravity-wave momentum fluxes in the polar stratosphere of both hemispheres. Geophys. Res. Lett., 34, L19804, doi:10.1029/2007GL031072.

    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 2001: An ultrasimple spectral parameterization for nonorographic gravity waves. J. Atmos. Sci., 58, 18371857.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113, D12110, doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1990: Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion. J. Atmos. Sci., 47, 22112225.

  • Wu, D. L., 2004: Mesoscale gravity wave variances from AMSU-A radiances. Geophys. Res. Lett., 31, L12114, doi:10.1029/2004GL019562.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 139 7
PDF Downloads 202 100 4

On the Intermittency of Gravity Wave Momentum Flux in the Stratosphere

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, École Polytechnique, IPSL, Palaiseau, France
  • | 2 NorthWest Research Associates, CoRA Office, Boulder, Colorado
  • | 3 Laboratoire de Météorologie Dynamique, École Normale Supérieure, IPSL, Paris, France
Restricted access

Abstract

In this article, long-duration balloon and spaceborne observations, and mesoscale numerical simulations are used to study the intermittency of gravity waves in the lower stratosphere above Antarctica and the Southern Ocean; namely, the characteristics of the gravity wave momentum-flux probability density functions (pdfs) obtained with these three datasets are described. The pdfs consistently exhibit long tails associated with the occurrence of rare and large-amplitude events. The pdf tails are even longer above mountains than above oceanic areas, which is in agreement with previous studies of gravity wave intermittency in this region. It is moreover found that these rare, large-amplitude events represent the main contribution to the total momentum flux during the winter regime of the stratospheric circulation. In contrast, the wave intermittency significantly decreases when stratospheric easterlies develop in late spring and summer. It is also shown that, except above mountainous areas in winter, the momentum-flux pdfs tend to behave like lognormal distributions. Monte Carlo simulations are undertaken to examine the role played by critical levels in influencing the shape of momentum-flux pdfs. In particular, the study finds that the lognormal shape may result from the propagation of a wave spectrum into a varying background wind field that generates the occurrence of frequent critical levels.

Corresponding author address: Albert Hertzog, Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France. E-mail: albert.hertzog@lmd.polytechnique.fr

Abstract

In this article, long-duration balloon and spaceborne observations, and mesoscale numerical simulations are used to study the intermittency of gravity waves in the lower stratosphere above Antarctica and the Southern Ocean; namely, the characteristics of the gravity wave momentum-flux probability density functions (pdfs) obtained with these three datasets are described. The pdfs consistently exhibit long tails associated with the occurrence of rare and large-amplitude events. The pdf tails are even longer above mountains than above oceanic areas, which is in agreement with previous studies of gravity wave intermittency in this region. It is moreover found that these rare, large-amplitude events represent the main contribution to the total momentum flux during the winter regime of the stratospheric circulation. In contrast, the wave intermittency significantly decreases when stratospheric easterlies develop in late spring and summer. It is also shown that, except above mountainous areas in winter, the momentum-flux pdfs tend to behave like lognormal distributions. Monte Carlo simulations are undertaken to examine the role played by critical levels in influencing the shape of momentum-flux pdfs. In particular, the study finds that the lognormal shape may result from the propagation of a wave spectrum into a varying background wind field that generates the occurrence of frequent critical levels.

Corresponding author address: Albert Hertzog, Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France. E-mail: albert.hertzog@lmd.polytechnique.fr
Save