Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit Microphysical Model. Part II: The Role of Sea Spray

J. Shpund Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by J. Shpund in
Current site
Google Scholar
PubMed
Close
,
J. A. Zhang Rosenstiel School of Marine and Atmospheric Science, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by J. A. Zhang in
Current site
Google Scholar
PubMed
Close
,
M. Pinsky Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by M. Pinsky in
Current site
Google Scholar
PubMed
Close
, and
A. Khain Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The effect of sea spray on the thermodynamics and microphysical structure of the lowest 400-m layer under strong wind speeds is investigated using a 2D hybrid Lagrangian–Eulerian model with spectral bin microphysics. A large number of adjacent and interacting Lagrangian parcels move within a turbulent-like flow with the largest vortices being interpreted as large eddies (LE) with characteristic velocity of a few meters per second.

It is shown that sea spray effect strongly depends on the environmental conditions, and largely on relative humidity (RH). When RH < ~90%, spray evaporates and contributes to moistening and cooling of the boundary layer, as well as to an increase in surface fluxes. When RH > ~90% the effects of spray on the BL thermodynamics substantially decrease. Spray leads to formation of drizzle by collisions with droplets formed on background aerosols.

It is also shown that LE transport about 20% of large spray drops with radius exceeding 150 μm to the upper levels of the atmospheric mixed layer. It is hypothesized that this effect is of much importance with regard to the spray effect on the microphysics and dynamics of deep convective clouds typical of a hurricane eyewall.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. E-mail: khain@vms.huji.ac.il

Abstract

The effect of sea spray on the thermodynamics and microphysical structure of the lowest 400-m layer under strong wind speeds is investigated using a 2D hybrid Lagrangian–Eulerian model with spectral bin microphysics. A large number of adjacent and interacting Lagrangian parcels move within a turbulent-like flow with the largest vortices being interpreted as large eddies (LE) with characteristic velocity of a few meters per second.

It is shown that sea spray effect strongly depends on the environmental conditions, and largely on relative humidity (RH). When RH < ~90%, spray evaporates and contributes to moistening and cooling of the boundary layer, as well as to an increase in surface fluxes. When RH > ~90% the effects of spray on the BL thermodynamics substantially decrease. Spray leads to formation of drizzle by collisions with droplets formed on background aerosols.

It is also shown that LE transport about 20% of large spray drops with radius exceeding 150 μm to the upper levels of the atmospheric mixed layer. It is hypothesized that this effect is of much importance with regard to the spray effect on the microphysics and dynamics of deep convective clouds typical of a hurricane eyewall.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. E-mail: khain@vms.huji.ac.il
Save
  • Andreas, E. L, 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52, 852862.

  • Andreas, E. L, 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184.

  • Andreas, E. L, 2002: A review of the sea spray generation function for the open ocean. Atmosphere–Ocean Interactions, Vol. 1, W. Perrie, Ed., WIT Press, 1–46.

  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440.

  • Andreas, E. L, and K. A. Emanuel, 2001: Effect of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751.

  • Andreas, E. L, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352.

    • Search Google Scholar
    • Export Citation
  • Bao, J. W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea spray on the surface boundary. Bound.-Layer Meteor., 140, 361381, doi:10.1007/s10546-011-9617-1.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1989: A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev., 117, 10061016.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1966: A scheme for numerical integration of the equations of motion on an irregular grid free of nonlinear instability. Mon. Wea. Rev., 94, 3940.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. C. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104.

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 26472661.

  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Gall, J. S., W. M. Frank, and Y. Kwon, 2008: Effects of sea spray on tropical cyclones simulated under idealized conditions. Mon. Wea. Rev., 136, 16861705.

    • Search Google Scholar
    • Export Citation
  • Ginis, I., A. P. Khain, and E. Morozovsky, 2004: Effects of large eddies on the structure of the marine boundary layer under strong wind conditions. J. Atmos. Sci., 61, 30493063.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and M. Pinsky, 1995: Drop inertia and its contribution to turbulent coalescence in convective clouds: Part I: Drop fall in the flow with random horizontal velocity. J. Atmos. Sci., 52, 196206.

    • Search Google Scholar
    • Export Citation
  • Khain, A., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, doi:10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383410, doi:10.1007/s10546-011-9624-2.

    • Search Google Scholar
    • Export Citation
  • Li, W., 2004: Modeling air–sea fluxes during a western Pacific typhoon: Role of sea spray. Adv. Atmos. Sci., 21, 269276.

  • Li, W., W. Perrie, E. L Andreas, J. Gyakum, and R. McTaggart-Cowan, 2003: Impact of sea spray on numerical simulation of extratropical hurricanes. Preprints, 12th Conf. on Interactions of the Sea and Atmosphere, Long Beach, CA, Amer. Meteor. Soc., 2.5. [Available online at https://ams.confex.com/ams/pdfpapers/58448.pdf.]

  • Lorsolo, S., J. L. Schroender, P. Dodge, and F. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893.

    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781805.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176.

  • Martensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H. C. Hansson, 2003: Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res., 108, 4297, doi:10.1029/2002JD002263.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., E. L Andreas, W. Zhang, W. Li, J. Gyakum, and R. McTaggart-Cowan, 2005: Sea spray impacts on intensifying midlatitude cyclones. J. Atmos. Sci., 62, 18671883.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., L. Magaritz, A. Khain, O. Krasnov, and A. Sterkin, 2008: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in a nonmixing limit. J. Atmos. Sci., 65, 20642086.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and L. Magaritz, 2010: Representing turbulent mixing of size distribution functions in Eulerian and Lagrangian cloud models. Quart. J. Roy. Meteor. Soc., 136, 12281242.

    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., S. A. Suslov, and Y.-L. Lin, 2011: Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound.-Layer Meteor., 141, 120, doi:10.1007/s10546-011-9625-1.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., M. Pinsky, and A. Khain, 2011: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 23662384.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670.

  • Smith, R. K., M. T. Montgomery, and N. Van Sang, 2009: Tropical cyclone spinup revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008a: First direct measurements of enthalpy flux in the hurricane boundary layer: the CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., K. B. Katsaros, P. G. Black, S. Lehner, J. R. French, and W. M. Drennan, 2008b: Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound.-Layer Meteor., 128, 173189, doi:10.1007/s10546-008-9281-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, doi:10.1029/2007JD009643.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 595 392 199
PDF Downloads 208 64 10